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About modal logic

What is modal logic?

A modal is anything that qualifies the truth of a
sentence.
�p,♦p

Historically it begins from Aristotle goes to Leibniz. Continues in 1912
with C.I. Lewis and Kripke in the 60’s.

Applications of ML: artificial intelligence (knowledge representation),
program verification, hardware verification, and distributed computing

Reason: good balance between expressive power and computational
complexity
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Computational problems

Two computational problems:

1 Model-checking problem: is a given formula true at a given state at a
given Kripke structure

2 Validity problem: is a given formula true in all states of all Kripke
structures
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Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Computational problems

Both problems are decidable.

Model-checking can be solved in linear time, while validity is
PSPACE-complete.

However, ML is a fragment of first order logic (FO).

In first order logic, the above problems are computationally hard.

Only very restricted fragments of FO are decidable, typically defined
in terms of bounded quantifier alternation.

But in ML we have arbitrary nesting of modalities.

So, this cannot be captured by bounded quantifier alternation.

Petros Potikas (NTUA) Modal logic decidability 9/5/2017 5 / 26



Modal logic and first-order logic with two variables

Taking a closer look at ML, we see that it is a fragments of 2-variable
first-order logic FO2.

FO2 is more tractable than full first-order logic.

However, this is not enough, as extensions of ML, as
computation-tree logic (CTL) while not captured by FO2

CTL can be viewed as a fragment of 2-variable fixpoint logic (FP2)

FP2 does not enjoy the nice computational properties of FO2.

Decidability of CTL can be explained by tree-model property, which is
enjoyed by CTL, but not by FP2.

Finally, the tree model property leads to automata-based decision
procedures.
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Syntax

Definition

(The Basic Modal Language) Let P = {P0,P1,P2, ...} be a set of sentence
letters, or atomic propositions. We also include two special propositions >
and ⊥ meaning ‘true’ and ‘false’ respectively. The set of well-formed
formulas of modal logic is the smallest set generated by the following
grammar: P0,P1,P2, ... | > | ⊥ | ¬A | A ∨ B | A ∧ B | A→ B | �A | ♦A

Examples

Modal formulas include: �⊥,P0 → ♦(P1 ∧ P2).
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Truth

A Kripke structure M is a tuple (S , π,R), where S is set of states (or
possible worlds), π : P→ 2S , and R a binary relation on S .

(M, s) |= A, sentence A is true at s in M

Truth conditions:

1 (M, s) |= Pi iff s ∈ π(Pi )

2 (M, s) |= >
3 (M, s) 6|= ⊥
4 (M, s) |= ¬A iff not (M, s) |= A

5 (M, s) |= A ∨ B iff either (M, s) |= A or, (M, s) |= B ,or both

6 (M, s) |= �A iff for every t, s.t. R(s, t), (M, t) |= A

A sentence true at every possible world in every model is said to be
valid, written |= A
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Model-checking problem

Theorem

There is an algorithm that, given a finite Kripke structure M, a state s of
M and a modal formula φ, determines whether (M, s) |= φ in time
O(||M|| × |φ|).

||M||: number of states in S , and number of pairs in R

|φ|: length of φ, number of symbols is φ

Proof.

Let φ1, ..., φm be the subformulas of φ listed in order of length. Thus
φm = φ, and if φi is a subformulas of φj , then i < j . There are at most |φ|
subformulas, so m ≤ |φ|. By induction on k , we can show that we can
label each state s with φj or ¬φj , for j = 1, ..., k , depending on whether or
not φj is true in s in time O(k||M||). Only interesting case is φk+1 = �φj ,
j < k + 1. By induction hypothesis, we have that each state has already
been labeled with φj or ¬φj , so we know if node s can be labeled with
φk+1 or not in time O(||M|||).
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Characterizing the properties of necessity

Set of valid formulas can be viewed as a characterization of the properties
of necessity

Two approaches:

1 Proof-theoretic: all properties of necessity can be formally derived
from a short list of basic properties

2 Algorithmic: we study algorithms that recognize properties of
necessity and consider their computational complexity.
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Properties of necessity

Some basic properties of necessity:

Theorem

For all formulas φ, ψ, and Kripke structures M:

1 if φ is an instance of a propositional tautology, then M |= φ

2 if M |= φ and M |= φ→ ψ, then M |= ψ

3 M |= (�φ ∧�(φ→ ψ))→ �ψ
4 if M |= φ, then M |= �φ
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Characterizing the properties of necessity: Proof-theoretic

Consider the following axiom system K:

(A1) All tautologies of propositional calculus

(A2) (�φ ∧�(φ→ ψ))→ �ψ (Distribution axiom)

(R1) From φ and φ→ ψ infer ψ (Modus ponens)

(R2) From φ infer �φ (Generalization)

Theorem (Kripke ’63)

K is a sound and complete axiom system.
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Characterizing the properties of necessity: algorithmically

The above characterization of the properties of necessity is not
constructive.

An algorithm that recongizes valid formulas is another
characterization.

First step, if a formula is satisfiable, it is also satisfiable is a finite
structure of bounded size (bounded-model property).

Stronger than the finite-model property, which asserts that if a
formula is satisfiable, then it is satisfiable in a finite structure.

This implies that formula φ is valid in all Kripke structures iff φ is
valid in all finite Kripke structures.

Theorem (Fischer,Ladner ’79)

If a modal formula φ is satisfiable, then φ is satisfiable in a Kripke
structure with at most 2|φ| states.
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Characterizing the properties of necessity: algorithmically

From the above Theorem we can get an algorithm (not efficient) for
testing validity of a formula φ: construct all Kripke structures with at
most 2|φ| states and check if the formula is true in every state of each
of these structures.

The “inherent difficulty” of the problem is given by the next theorem:

Theorem (Ladner ’77)

The validity problem for modal logic is PSPACE-complete.
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Modal logic vs. First-Order Logic

Modal logic can be viewed as a fragment of first-order logic.

The states in a Kripke structure correspond to domain elements in a
relational structure and modalities correspond to quantifiers.

Given a set P of propositional constants, let the vocabulary P∗
constist of unary predicate q corresponding to each propositional
constant q in P, as well as binary predicate R.

Every Kripke structure M can be viewed as a relational structure M∗

over the vocabulary P∗.
Formally, a mapping from a Kriple structure M = (S , π,R) to a
relational structure M∗ over the vocabulary P∗ has:

1 domain of M∗ is S .
2 for each propositional constant q ∈ P, the interpretation of q in M∗ is

the set π(q).
3 the interpretation of the binary predicate R, is the binary relation R.
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Translation of Modal logic to First-Order Logic

A translation from modal formulas into first-order formulas over the
vocabulary P∗, so that for every modal formula φ there is corresponding
first-order formula φ∗ with one free variable (ranging over S):

1 q∗ = q(x) for a propositional constant q

2 (¬φ)∗ = ¬(φ∗)

3 (φ ∧ ψ)∗ = (φ∗ ∧ ψ∗)
4 (�φ)∗ = (∀y(R(x , y)→ φ∗(x/y))), where y is a new variable not

appearing in φ∗ and φ∗(x/y) is the result of replacing all free
occurrences of x in φ∗ by y

Example

(�♦q)∗ = ∀y(R(x , y)→ ∃z(R(y , z) ∧ q(z)))
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Theorem (vBenthem ’74,’85)

1 (M, s) |= φ iff (M∗,V ) |= φ∗(x), for each assignment V s.t.
V (x) = s.

2 φ is a valid modal formula iff φ∗ is a valid first-order formula.

φ∗ is true of exactly the domain elements corresponding to states s for
which (M, s) |= φ
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Translation of Modal logic to First-Order Logic
Is there a paradox?

Modal logic is essentially a first-order logic.

Model-checking in first-order logic is PSPACE-complete while in
modal logic in linear time.

Validity is robustly undecidable in first-order logic (decidable only by
bounding the alternation of quantifiers), while in modal logic is
PSPACE-complete.

Carefully examining propositional modal logic, reveals that it is a
fragment of 2-variable first-order logic (FO2), e.g.
∀x∀y(R(x , y)→ R(y , x)) is in FO2, while
∀x∀y∀z(R(x , y) ∧ R(y , z)→ R(x , z)) is not in FO2.

Two variables suffice to express modal logic formulas, see the above
definition, where new variables are introduced only in the last clause:

Example

(��q)∗ = ∀y(R(x , y)→ ∀z(R(y , z)→ q(z))).
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Translation of Modal logic to First-Order Logic

But re-using variables we can avoid introducing new variables. Replace the
definition of φ∗ by definition φ+:

1 q+ = q(x) for a propositional constant q

2 (¬φ)+ = ¬(φ+)

3 (φ ∧ ψ)+ = (φ∗ ∧ ψ+)

4 (�φ)+ = (∀y(R(x , y)→ ∀x(x = y → φ+)))

Example

(��q)+ = ∀y(R(x , y)→ ∀x(x = y → ∀y(R(x , y)→ ∀x(x = y → q(x))).
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Translation of Modal logic to First-Order Logic

Theorem
1 (M, s) |= φ iff (M∗,V ) |= φ+(x), for each assignment V s.t.

V (x) = s.

2 φ is a valid modal formula iff φ+ is a valid FO2 formula.
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Complexity of FO2

How hard is to evaluate truth of FO2 formulas?

Theorem (Immerman ’82, Vardi ’95)

There is an algorithm that, given a relational structure M over a domain
D, an FO2-formula φ(x , y) and an assignment V : {x , y} → D, determines
whether (M,V ) |= φ in time O(||M||2 × |φ|).
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Complexity of FO2

Historically, Scott in 1962 showed the first decidability result for FO2,
without equality. The full class FO2 was considered by Mortimer in
1975, who proved decidability by showing that it has the finite model
proporty.

But Mortimer’s proof shows bounded-model property.

Theorem

If an FO2-formula φ is satisfiable, then φ is satisfiable in a relational
structure with at most 2|φ|) elements.
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Complexity of FO2

To check the validity of a FO2 formula φ, one has to consider only all
structures of exponential size.

Further, the translation of modal logic to FO2 is linear, so we have
Theorem 5.

Note, however, that the validity problem for FO2 is hard for
co-NEXPTIME (Fürer81) and also complete, while from Theorem 6
modal logic is PSPACE-complete.

The embedding to FO2 does not give a satisfactory explananation of
the tractability of modal logic.
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Reflexivity
In epistemic logic veracity is needed, what is known is true,

i.e.
�φ→ φ
Logical properties of necessity are related with the properties of the
graph, e.g. veracity is reflexivity
A Kripke structure M = (S , π,R) is said to be reflexive if the relation
R is reflexive. Let Mr be the class of all reflexive Kripke structures.
Axiom T : �p → p

Theorem

T is sound and complete for Mr .

How hard is validity under the assumption of veracity?

Theorem

The validity problem for modal logic in Mr is PSPACE-complete.

Theorem

A modal formula φ is valid in Mr iff the FO2 ∀x(R(x , x)→ φ+) is valid.
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Axiom system S5
What about other properties of necessity?

Consider introspection:

1 Positive introspection - “I know what I know”: �p → ��p.
2 Negative introspection - “I know what I don’t know”: ¬�p → �¬�p.

A Kripke structure M = (S , π,R) is said to be reflexive, symmetric,
transitive if the relation R is reflexive, symmetric, transitive.

Let Mrst be the class of all reflexive, symmetric and transitive Kripke
structures.

Let S5 be the axiom system obtained from T by adding the two rules
of introspection.

Theorem
1 S5 is sound and complete for Mrst .

2 The validity problem for S5 is NP-complete.

Symmetry can be expressed by FO2, ∀x , y(R(x , y)→ R(y , x), while
transitivity cannot ∀x , y , z(R(x , y) ∧ R(y , z)→ R(x , z)).
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About decidability of modal logic

The validity in a modal logic is typically decidable. It is very hard to
find a modal logic, where validity is undecidable.

The translation to FO2 provides a partial explanation why modal logic
is decidable.
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