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What is modal logic? A modal is anything that qualifies the truth of a
sentence.

Op, Op

Historically it begins from Aristotle goes to Leibniz. Continues in 1912
with C.I. Lewis and Kripke in the 60's.

@ Alethic Reading: [J¢ means ‘¢ is necessary’ and Q¢ means ‘¢ is
possible’.

@ Deontic Reading: ¢ means ‘¢ is obligatory’ and {¢ means ‘¢ is
permitted’. In this literature, typically ‘O’ is used instead of ‘[J' and
‘P’ instead of ‘',

e Epistemic Reading: (¢ means ‘¢ is known' and {¢ means ‘¢ is
consistent with the current information’. In this literature, typically
‘K" is used instead of ‘0" and ‘L’ instead of ‘{'.

@ Temporal Reading: [J¢ means ‘¢ will always be true’ and {¢ means

‘¢ will be true at some point in the future’
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Definition

(The Basic Modal Language) Let P = {Py,P1,P», ...} be a set of sentence
letters, or atomic propositions. We also include two special propositions T

and L meaning ‘true’ and ‘false’ respectively. The set of well-formed
formulas of modal logic is the smallest set generated by the following
grammar: Po,Py,P>,... | T|L|-A|AVB|AAB|A— B|OA| QA

Examples
Modal formulas include: 0L, Py — O(P1 A Py).
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Models

A model is a pair < W, P >, where W is set of possible worlds, P an
infinite sequence Py, P4, ... of subsets of W.
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Models

A model is a pair < W, P >, where W is set of possible worlds, P an
infinite sequence Py, P4, ... of subsets of W.

=M A, sentence A is true at o in M

Truth conditions:

=MP;iff a € P

Fat T

ot L

=M S Aff not =M A

=M AV B iff either =M A or, =M B or both
=M AN B iff both EM A, and EM B

EM A Bif EM A, then EM B

=M DA iff for every 8 in M, ):g\/l A

=0 QA iff for some B in M, =41 A

©O00000CO0CO0CO
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A sentence true at every possible world in every model is said to be valid,
written = A

Petros Potikas (NTUA) Modal logic intro



A sentence true at every possible world in every model is said to be valid,
written = A
Let's see some valid sentences:

Petros Potikas (NTUA) Modal logic intro 2/5/2017 5/1



A sentence true at every possible world in every model is said to be valid,
written = A
Let's see some valid sentences:

T.OA—= A

Petros Potikas (NTUA) Modal logic intro 2/5/2017 5/1



A sentence true at every possible world in every model is said to be valid,

written = A
Let's see some valid sentences:

T.OA—= A

5. A — OA

Petros Potikas (NTUA) Modal logic intro

2/5/2017

5/1



A sentence true at every possible world in every model is said to be valid,

written = A
Let's see some valid sentences:

T.OA—= A
5. A — OA
Not everywhere hold T and 5.
Petros Potikas (NTUA) Modal logic intro

2/5/2017

5/1



A sentence true at every possible world in every model is said to be valid,
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A sentence true at every possible world in every model is said to be valid,

written = A
Let's see some valid sentences:

T.OA—= A

5. A — OA

Not everywhere hold T and 5.
More widely accepted are the following:

K. O(A — B) — (OA — OB)
Rule of necessitation (RN):
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A sentence true at every possible world in every model is said to be valid,

written = A
Let's see some valid sentences:

T.OA—= A

5. A — OA

Not everywhere hold T and 5.
More widely accepted are the following:

K. O(A — B) — (OA — OB)
Rule of necessitation (RN):

If = A, then =0A

Everywhere holds:

Df<> <>A — —[0-A
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Propositional logic

Relationship to propositional logic:
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Propositional logic

Relationship to propositional logic: modal logic includes propositional
logic.

Q If Alis a tautology, then = A
@ Propositional correct patterns are still applied in modal logic

(MP) If EA— Band A, then EB
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Invalid sentences

Some invalid sentences:

Example
A— LA
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Invalid sentences

Some invalid sentences:

Example

A—[TA
countermodel: W = {a, 8}, P, ={a},n=0,1,2,...
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Invalid sentences

Some invalid sentences:

Example

A—[TA
countermodel: W = {a, 8}, P, ={a},n=0,1,2,...

Example
O(AV B) — (OAV OB)
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Axiomatization
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Axiomatization

Axioms:
Q@ T.0A-A
Q@ 5 CA—-OOA
Q@ K. OA— B)— (ODA—0UB)
Q DfO. <>A +— —0-A
@ PL. A, where A is a tautology.
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Axiomatization

Axioms:
Q@ T.0A-A
Q@ 5 CA—-OOA
Q@ K. OA— B)— (ODA—0UB)
Q DfO. <>A +— —0-A
@ PL. A, where A is a tautology.

Rules of inference:

A
RN. TA

A (A= B)
MP. B

F A means sentence A is a theorem
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Modal logic includes propositional logic:
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Modal logic includes propositional logic:

A1, A, . LA,
RPL. A ,n>0
where the inference from A;, ..., A, to A is propositionally correct
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New theorems

New theorems:
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New theorems:
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New theorems

New theorems:

TO. A— QA

Proof:

O0-A—-A T
A—-[1-A 1,PL
QA+ -O-A DFO

A — QA 2,3,PL

W=
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New theorems

D. OA— QA
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New theorems

D. OA — OA
Since A — A and A — QA are theorems, by PL so is A — QA.
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New theorems

D. OA — OA
Since A — A and A — QA are theorems, by PL so is A — QA.

B. A—[0OA
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New theorems

D. OA — OA
Since A — A and A — QA are theorems, by PL so is A — QA.

B. A— 0OOA
Proof:
1. CA—0O0A 5
2. A— QA T
3. A—-0O0A 1,2,PL
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Two more rules of inference:

A— B
RM. [OA—0OB
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Two more rules of inference:

A— B
RM. [OA—0OB

A+ B
RE. 0OA <« OB
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Two more rules of inference:

A— B
RM. [OA—0OB

A< B
RE. 0OA<«+ OB
Proof for RM:

A— B
O(A — B)

NS S

UA — 0B
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Another theorem:
Dfd. DA « —=0—-A
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Another theorem:
Dfd. DA « —=0—-A

O=A < —O--A DfO
O--A ¢+ -0-A 1,PL
A A PL
OA+ O-—-A  3,RE
OA < —-0-A  2,4,PL

AR
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Dual to B, S5 has
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Dual to B, S5 has

BO. OUA— A
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Dual to B, S5 has

BO. OUA— A

as well dual to 5 is:
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Dual to B, S5 has

BO. OUA— A

as well dual to 5 is:

50. OUA — LA

4. A= T0OA

O0A — DA 50
000A — O0A 1,RM
0A - 0O00A B

0OA - 0O0A  2,3,PL

=
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Dual to B, S5 has

BO. OUA— A

as well dual to 5 is:

50. OUA — LA

4. A= T0OA

O0A — DA 50
000A — O0A 1,RM
0A - 0O00A B

0OA - 0O0A  2,3,PL

=

with dual
40. OOA — QA
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Another rule of inference:

(Al NAx... N\ An) — A
RK. (OA;ADAg.. ADA,) —»OAn>0
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Soundness and completeness

All theorems are valid and the rules of inference preserve validity.
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Soundness and completeness
All theorems are valid and the rules of inference preserve validity. Thus the
axiomatization is sound.

On the other hand, every valid sentence is a theorem.
Thus the system is complete.

Not the only way to axiomatize S5: one of the best known, is RN together
with T, B, 4, K, Df$ as axioms.
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Other systems

Some of the most popular systems are:

=K+ N
K4d . =K+ 4
T=K+T
S4:=T+ 4
S5:=S54+5
D:=K+ D.
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Frames

Definition

(Frame) A pair < W, R > with W a nonempty set of states (worlds) and
RC W x W is called a frame. Given a frame F =< W, R >, we say the
(Kripke) model M is based on the frame F =< W, R > if

M =< W, R,V > for some valuation V.

Petros Potikas (NTUA) Modal logic intro 2/5/2017 18 /1



Different systems of modal logic are distinguished by the properties of
their corresponding accessibility relations.
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Different systems of modal logic are distinguished by the properties of

their corresponding accessibility relations.
There are several systems that have been proposed.

An accessibility relation R C G x G is:
o reflexive iff wRw, for every w € G

o symmetric iff wRu implies uRw, for all w,u € G

o transitive iff wRu and uRv together imply wRv, for all w,u,v € G.

o serial iff, for each w € G there is some u € G such that wRu.

o Euclidean iff, for every u,t € G, and w € G, wRu and wRt implies

uRt (note that it also implies: tRu)
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The logics that stem from these frame conditions are:
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The logics that stem from these frame conditions are:

K := no conditions
D := serial
T := reflexive

S4 := reflexive and transitive

S5 := reflexive and Euclidean
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Observations:
Euclidean + reflexivity = symmetry and transitivity.
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Observations:

Euclidean + reflexivity = symmetry and transitivity.

If the accessibility relation R is reflexive and Euclidean, R is provably
symmetric and transitive as well.
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The logics that stem from these frame conditions are:

K := no conditions
D := serial
T := reflexive

S4 := reflexive and transitive

S5 := reflexive and Euclidean

Observations:

Euclidean + reflexivity = symmetry and transitivity.

If the accessibility relation R is reflexive and Euclidean, R is provably
symmetric and transitive as well.

Hence for models of S5, R is an equivalence relation, because R is
reflexive, symmetric and transitive.
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