
EPISODE VIIA : ALGORITHMIC INFORMATION

THEORY

Antonis Antonopoulos

May 19, 2017

Kolmogorov Complexity Applications to CC

I Structure vs Randomness

I Measure the “amount of information”

I Compression: find regularities in a string

Episode VIIa : Algorithmic Information Theory 2/18

Kolmogorov Complexity Applications to CC

I How random is 111 · · ·1︸ ︷︷ ︸
1000 times

?

for i in range(1, 1000):
print i

I How random is 6535897932384626433832795028841971693?

I π = 3.141592653589793238462643383279502884197169320...

def pi(approx):
result = 0.0
for n in range(approx):

result += (-1.0)**n/(2.0*n+1.0)
return 4*result

Episode VIIa : Algorithmic Information Theory 3/18

Kolmogorov Complexity Applications to CC

I How random is 111 · · ·1︸ ︷︷ ︸
1000 times

?

for i in range(1, 1000):
print i

I How random is 6535897932384626433832795028841971693?

I π = 3.141592653589793238462643383279502884197169320...

def pi(approx):
result = 0.0
for n in range(approx):

result += (-1.0)**n/(2.0*n+1.0)
return 4*result

Episode VIIa : Algorithmic Information Theory 3/18

Kolmogorov Complexity Applications to CC

I How random is 111 · · ·1︸ ︷︷ ︸
1000 times

?

for i in range(1, 1000):
print i

I How random is 6535897932384626433832795028841971693?

I π = 3.141592653589793238462643383279502884197169320...

def pi(approx):
result = 0.0
for n in range(approx):

result += (-1.0)**n/(2.0*n+1.0)
return 4*result

Episode VIIa : Algorithmic Information Theory 3/18

Kolmogorov Complexity Applications to CC

I How random is 111 · · ·1︸ ︷︷ ︸
1000 times

?

for i in range(1, 1000):
print i

I How random is 6535897932384626433832795028841971693?

I π = 3.141592653589793238462643383279502884197169320...

def pi(approx):
result = 0.0
for n in range(approx):

result += (-1.0)**n/(2.0*n+1.0)
return 4*result

Episode VIIa : Algorithmic Information Theory 3/18

Kolmogorov Complexity Applications to CC

I How random is 111 · · ·1︸ ︷︷ ︸
1000 times

?

for i in range(1, 1000):
print i

I How random is 6535897932384626433832795028841971693?

I π = 3.141592653589793238462643383279502884197169320...

def pi(approx):
result = 0.0
for n in range(approx):

result += (-1.0)**n/(2.0*n+1.0)
return 4*result

Episode VIIa : Algorithmic Information Theory 3/18

Kolmogorov Complexity Applications to CC

Definition

Fix a Universal Turing Machine U. Kolmogorov complexity of a
string x , is the length of the smallest program generating x :

KU(x) = min
p
{|p| : U(p) = x}

I Universality : KU(x)≤ KA(x) + cA, for another TM A.

I K (x)
def .
= KU(x)

I K (x)≤ |x |+ O(1)

Episode VIIa : Algorithmic Information Theory 4/18

Kolmogorov Complexity Applications to CC

Definition

Fix a Universal Turing Machine U. Kolmogorov complexity of a
string x , is the length of the smallest program generating x :

KU(x) = min
p
{|p| : U(p) = x}

I Universality : KU(x)≤ KA(x) + cA, for another TM A.

I K (x)
def .
= KU(x)

I K (x)≤ |x |+ O(1)

Episode VIIa : Algorithmic Information Theory 4/18

Kolmogorov Complexity Applications to CC

I Remarkable cases:
I Very Simple Objects: K (x) = O(logn) (*or less)
I Random Objects: K (x) = n + O(logn)

I Kolmogorov Code E(x): encodes x by the shortest program that
prints x and halts.

Theorem

For all k ,n:

|{x ∈ Σn : K (x)≥ n− k}| ≥ 2n(1−2−k)

Proof:

I The number of programs of size < 2n−k is 2n−k −1 < 2n−k

I It leaves over 2n−2n−k programs of length n− k or greater.

�

Episode VIIa : Algorithmic Information Theory 5/18

Kolmogorov Complexity Applications to CC

I Remarkable cases:
I Very Simple Objects: K (x) = O(logn) (*or less)
I Random Objects: K (x) = n + O(logn)

I Kolmogorov Code E(x): encodes x by the shortest program that
prints x and halts.

Theorem

For all k ,n:

|{x ∈ Σn : K (x)≥ n− k}| ≥ 2n(1−2−k)

Proof:

I The number of programs of size < 2n−k is 2n−k −1 < 2n−k

I It leaves over 2n−2n−k programs of length n− k or greater.

�

Episode VIIa : Algorithmic Information Theory 5/18

Kolmogorov Complexity Applications to CC

Theorem

For all n, there exists some x with |x |= n such that K (x)≥ n.

Proof:

I Suppose, for the sake of contradiction, that for all x : K (x) < n

I Thus, ∀x∃px : U(px) = x , and |px |< n.

I There are 2n−1 programs of length < n.

I If all strings of length n had a program shorter than n, there must
be a program producing two different strings. Contradiction.

�

I Such a x is called Kolmogorov Random.

Episode VIIa : Algorithmic Information Theory 6/18

Kolmogorov Complexity Applications to CC

A Toy Example
Theorem

There are infinitely many primes.

Proof:

I Suppose for the sake of contradiction that they are finite:
p1, . . . ,pk , k ∈ N

I Let m ∈ N be Kolmogorov random, having length n.
I m = pe1

1 pe2
2 · · ·p

ek
k .

I We can describe m by < e1, · · · ,ek >, and we claim that this
gives a short descrtiption of m

I ei ≤ logm→ |ei | ≤ log logm
I Since m ≤ 2n+1, |< e1, · · · ,ek > | ≤ 2k log logm ≤ 2k log(n + 1)

I So K (m)≤ 2k log(n + 1) + c, contradicting K (m)≥ n.

Episode VIIa : Algorithmic Information Theory 7/18

Kolmogorov Complexity Applications to CC

There is a disturbance in the Force
Theorem

Kolmogorov complexity (K : N→ N) is undecidable.

Proof:

I Assume, for the sake of contradiction, that K is computable.
I Then, the function ψ(m) = minx∈N{x : K (x)≥m} is also

computable.
I K (ψ(m))≥m.
I Since ψ is computable, there exists a program of some fixed size

c that on input m outputs ψ(m) and halts.
I So, K (ψ(m))≤ |m|+ c ≤ 2 logm + c ⇒m ≤ 2 logm + c.

Contradiction.

�

Episode VIIa : Algorithmic Information Theory 8/18

Kolmogorov Complexity Applications to CC

Resource-Bounded Kolmogorov Complexity
Definition

Ct(x) = min
p
{|p| : U(p) outputs x in t(|x |) steps}

I Notice that here we measure the amount of time as a function of
the output, not the input.

Definition (Sipser ’83)

CDt(x) = min
p


U(p,x) accepts

|p| : U(p,z) rejects for all z 6= x
U(p,z) runs in time at most t(|z|),∀z ∈ Σ∗

Episode VIIa : Algorithmic Information Theory 9/18

Kolmogorov Complexity Applications to CC

I Buhrman, Fortow and Laplante (2002) developed a
nondeterministic version CNDt .

Definition (Levin ’73)

Ct(x) = min
p
{|p|+ log t : U(p) = x in t steps}

Definition (Allender ’01)

CT (x) = min
p
{|p|+ t : U(p, i) = the i th bit of x in t steps}

I Allender’s definition focus on sublinear time, so we need to
modify how U produces the string.

Episode VIIa : Algorithmic Information Theory 10/18

Kolmogorov Complexity Applications to CC

Theorem

For all x :
CDt(x)≤ Ct(x) + O(1)

Theorem (Fortnow and Kummer ’94)

The following are equivalent:

1. USAT is easy (that is NP = RP and P = UP).

2. For every polynomial p there exists a polynomial q and a
constant c such that for all x ,y :

Cq(x |y)≤ CDp(x |y) + c

Episode VIIa : Algorithmic Information Theory 11/18

Kolmogorov Complexity Applications to CC

Definition

We define sets of strings with similar Kolmogorov Complexity:

C[f (n), t(n)] = {x | Ct(x)≤ f (n)}

I These classes form well-defined hierarchies, with all the nice
properties.

Definition

A language L is P-printable if there exists a polynomial time com-
putable function f such that f (1n) enumerates exactly the strings
in L∩Σn.

Episode VIIa : Algorithmic Information Theory 12/18

Kolmogorov Complexity Applications to CC

Theorem

The following are equivalent:

1. L is P-printable

2. for some k , L⊆ C[k logn,nk]

3. for some k , Ct(x)≤ k logn for all x ∈ L

I Recall that a characteristic sequence of a set A, σA, is an infinite
binary sequence whose i th bit is 1 if the i th string of Σ∗ is in A.
The finite sequence σn

A is the characteristic sequence of A
through all of the strings of length up to n.

Episode VIIa : Algorithmic Information Theory 13/18

Kolmogorov Complexity Applications to CC

Theorem

A language A is in P/poly if and only if there is a constant c such
that for all n:

CT (σ
n
A)≤ nc

Theorem (Antunes-Fortnow-van Melkebeek)

The following are equivalent for all recursive languages L:

1. L is in P/poly

2. There exists a set A and a constant k such that L is in PA

and
CT (σ

n
A)≤ K (σ

n
A) + nk

for all n.

Episode VIIa : Algorithmic Information Theory 14/18

Kolmogorov Complexity Applications to CC

Other interesting applications
Theorem

A TM requires Ω(n2) steps to recognize L = {xxR : x ∈ {0,1}∗}.

Theorem

Let n, r ,s ∈ N with 2 logn ≤ r , s ≤ n
4 and s even. For each n

there is a n×n matrix over GF(2) such that every submatrix of
s rows and n− r columns has at least rank s/2.

Theorem

It requires Ω(n3/2/ logn) time to deterministically simulate a
linear-time 2-tape TM with one way input by a 1-tape TM with
one-way input.

Episode VIIa : Algorithmic Information Theory 15/18

Kolmogorov Complexity Applications to CC

Håstad Switching Lemma

Let f be a t-CNF on n variables, ρ a random restriction ∈ Rl and
α = 12tl

n ≤ 1. Then, the probability that f |ρ is an s-DNF is at least
1−αs.

I Other applications of the Incompressibility Method, including
Tournaments, Ramsey Numbers, High-Probability properties of
combinatorial objects, Kolmogorov Random Graphs, Compact
Routing, Average-case analysis of Heapsort, Shellsort and LCS
algos, Online CFL recognition.

Episode VIIa : Algorithmic Information Theory 16/18

Kolmogorov Complexity Applications to CC

Bibliography

An Introduction to Kolmogorov Complexity and Its Applications, Ming Li
and Paul Vitanyi. Springer, New York, 3rd edition, 2007

Information and Randomness: An Algorithmic Perspective, Cristian
Calude. Springer, Berlin, 2nd edition, 2002

Algorithmic Randomness and Complexity, Rod Downey and Denis
Hirschfeldt, Springer, Berlin, 2007

Kolmogorov Complexity and Computational Complexity, Osamu
Watanabe. Springer-Verlag, 1992

Algorithmic information theory, Chaitin, G.J., IBM Journal of Research
and Development, v.21, No. 4, 350359, 1977 Kolmogorov Complexity
and Computational Complexity, Lance Fortnow

A Kolmogorov Complexity Proof of Håstad Switching Lemma: An
Exposition, Sophie Laplante

Episode VIIa : Algorithmic Information Theory 17/18

May the Force be with you!

	Kolmogorov Complexity
	Kolmogorov Complexity

	Applications to CC
	Applications to CC

