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Interesting Questions

1 Convergence
Given infinite time, do the agents converge to specific fixed opinions?
Does the system have an equilibrium point?

2 Rate of convergence
If the system converges, how fast do they reach the equilibrium point?
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Opinion Formation

We have a social network comprised of a set of n agents, that express
their opinions and beliefs about a certain topic.
We represent agent i ’s opinion as a real number xi . For example, xi
could represent a position on the political spectrum, or i ’s sympathy
towards a specific sports team (e.g. AEK).
There also exists a weighted graph G = (V ,E ) that represents the
structure of the underlying social network.
Each agent i is a node in G , and there exists an edge between agents
i and j in G iff j influences i ’s opinion.
For an agent i , G shows us which agents influence i and by how much.
The weight wij ≥ 0 of an edge (i , j) represents j ’s influence over i .
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Opinion Formation

x(t) denotes the vector of the agents’ opinions at time t.
A denotes the matrix of the agents’ weights. aij := wij .

Neighborhood of an agent
Ni = {j : (i , j) ∈ E (G)} is called the neighborhood of agent i .

If i is not influenced at all by j , we assign wij = 0 and j /∈ Ni .
If wii > 0, this implies i ∈ Ni .
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Linear Models

In linear models, the influence of one agent over another does not
change with time.
Therefore, G is a steady graph and A is a constant matrix.
We can apply powerful linear techniques to analyze these models.

1 Matrix theory.
2 Markov chain theory.
3 Graph theory.
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The DeGroot Model

The simplest yet most expressive linear model is the DeGroot model.
All other linear models can be formulated as an instance of the
DeGroot model.

DeGroot Model

xi (t + 1) = wiixi (t) +
∑
j∈Ni
j 6=i

wijxj(t)

or, in matrix form

x(t + 1) = Ax(t)
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The DeGroot Model

If x(0) the vector of initial agent opinions, then x(t) = Atx(0).
We can normalize A so that ∀i

∑
j∈Ni wij = 1 =⇒ A is stochastic.

Two important variations:

The undirected DeGroot model. ∀i , j wij = wji =⇒ A = AT .
The directed DeGroot model. No assumption on wij , wji .
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The DeGroot Model - Results

Consider the Markov chain with transition matrix A.
The system converges to x∗ = limt→∞ x(t) = limt→∞Atx(0) iff the
Markov chain is

Irreducible =⇒ Eventually, everyone is influenced (indirectly) by
everyone.
Aperiodic =⇒ At least one agent is influenced by his previous opinion.

This implies that ∃t0 : At0 has only positive elements.
Since x∗ = Ax∗, we call x∗ the Nash equilibrium of the model.
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The DeGroot Model - Results

Let |λ1| > |λ2| ≥ . . . ≥ |λn| be the eigenvalues of A.
Since A is stochastic, ρ(A) = λ1 = 1 is a unique eigenvalue and it
corresponds to q1 = 1

n 1 = [ 1
n ,

1
n , . . . ,

1
n ].

The eigenvectors qi of A are orthonormal and linearly independent,
thus they span Rn.
We can write xT (0) =

∑n
i=1 ciqi , for some ci ∈ R.
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The DeGroot Model - Results

We have x(t) = c1q1 +
∑n

i=2 ciλ
t
i qi .

As t →∞, we have x(t)→ x∗ = c1q1.
Therefore, the Nash equilibrium is a state in which all agents share
the same opinion.
We call such an equilibrium a consensus.
Because |λ2| ≥ |λi | ∀3 ≤ i ≤ n, the convergence rate to x∗ is
exponential in the order of λ2.
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The Friedkin - Johnsen Model

A variation of the DeGroot model is the Friedkin - Johnsen (FJ)
model.
Each agent i , apart from his expressed opinion xi holds a persistent,
intrinsic opinion si that remains constant even as xi (t) is updated.

FJ Model

xi (t + 1) = wiisi +
∑
j∈Ni
j 6=i

wijxj(t)

or, in matrix form

x(t + 1) = Ax(t) + Bs
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The Friedkin - Johnsen Model

The elements of the diagonal of A are equal to 0.
B is a diagonal matrix with Bii := wii . We require B 6= 0.
s is the vector of the agents’ intrinsic opinions.
Assuming x(0) = s, we get:

x(t) = Ats +
t−1∑
k=0

AkBs

Vasilis Livanos (NTUA) Opinion Dynamics March 2, 2017 15 / 32



The Friedkin - Johnsen Model

The elements of the diagonal of A are equal to 0.

B is a diagonal matrix with Bii := wii . We require B 6= 0.
s is the vector of the agents’ intrinsic opinions.
Assuming x(0) = s, we get:

x(t) = Ats +
t−1∑
k=0

AkBs

Vasilis Livanos (NTUA) Opinion Dynamics March 2, 2017 15 / 32



The Friedkin - Johnsen Model

The elements of the diagonal of A are equal to 0.
B is a diagonal matrix with Bii := wii . We require B 6= 0.

s is the vector of the agents’ intrinsic opinions.
Assuming x(0) = s, we get:

x(t) = Ats +
t−1∑
k=0

AkBs

Vasilis Livanos (NTUA) Opinion Dynamics March 2, 2017 15 / 32



The Friedkin - Johnsen Model

The elements of the diagonal of A are equal to 0.
B is a diagonal matrix with Bii := wii . We require B 6= 0.
s is the vector of the agents’ intrinsic opinions.

Assuming x(0) = s, we get:

x(t) = Ats +
t−1∑
k=0

AkBs

Vasilis Livanos (NTUA) Opinion Dynamics March 2, 2017 15 / 32



The Friedkin - Johnsen Model

The elements of the diagonal of A are equal to 0.
B is a diagonal matrix with Bii := wii . We require B 6= 0.
s is the vector of the agents’ intrinsic opinions.
Assuming x(0) = s, we get:

x(t) = Ats +
t−1∑
k=0

AkBs

Vasilis Livanos (NTUA) Opinion Dynamics March 2, 2017 15 / 32



The Friedkin - Johnsen Model

The FJ model can be simulated via the DeGroot model if for every agent
i , we set aii = 0, and then consider a “ghost” agent gi in G with the
following properties:

xgi (t) = si

wgi gi = 1
wgi j = 0 ∀j 6= gi

wjgi = 0 ∀j 6= i
wigi = wii
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The Friedkin - Johnsen Model - Results

A is now a substochastic matrix, therefore ρ(A) < 1.

Asymptotic convergence

x(t)→ x∗ ⇐⇒ ∃γ, t0(γ) : ‖x(t)− x∗‖∞ ≤ γ ∀t ≥ t0

In the undirected FJ model where wij = wji ∀i , j , the FJ model
converges to a Nash equilibrium:

x∗ =
∞∑

k=0
AkBs = (I − A)−1Bs

In 2012, Ghaderi and Srikant proved that the undirected FJ model
converges to x∗ in O

(
ln(n/γ)
1−ρ(A)

)
time.
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The Friedkin - Johnsen Model - Results

If wii > 0, we call agent i a stubborn agent.
If wii = 1, we call agent i a fully-stubborn agent.
If 0 < wii < 1, we call agent i a partially-stubborn agent.

If wii = 0, we call agent i a non-stubborn agent.
x∗ is a convex combination of the initial opinions of stubborn agents.
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Coevolutionary Models

In non-linear models, the influence of one agent over another changes
with time.
Gt , A(t) and Ni all vary with time.
Edges in Gt are added, deleted or have their weights adjusted to
represent the fluctuation of Ni .
The opinions of the agents and the underlying social network
coevolve, with one affecting the other.
Much more interesting models, but linear techniques cannot be
applied, making them considerably more difficult to analyze.
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The Hegselmann - Krause Model

The most general and most interesting coevolutionary model is the
Hegselmann - Krause (HK) model, also called the bounded
confidence model.
An instance of the HK model is characterized by x(0) and the agents’
confidence ε.
ε is constant, uniform for all agents and is used in the computation of
each agent’s opinion-dependent neighborhood.

Neighborhood of an agent
Ni (t, ε) = {j : |xi (t − 1)− xj(t − 1)| ≤ ε} is the neighborhood of agent i .
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The Hegselmann - Krause Model

HK Model

xi (t) =
∑

j∈Ni (t,ε)

xj(t − 1)
|Ni (t, ε)|

HK Model - Matrix Form

x(t) = A(t, x(t))x(t − 1)

For convenience, At := A(t, x(t)).
The (i , j) element of each At is:

1
|Ni (t,ε)| , if j ∈ Ni (t, ε)
0, if j /∈ Ni (t, ε)

x(t) = AtAt−1 . . .A1x(0).
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The Hegselmann - Krause Model

Split
If for two agents i and j we have |xi (t)− xj(t)| > ε at time t, we call this
event a split at time t, because it leads to i /∈ Nj(t + 1, ε) and
j /∈ Ni (t + 1, ε).

Some important properties of the HK model are:
1 The order of the agents’ opinions do not change. Specifically, if for

two agents i and j we have xi (t) ≤ xj(t), this implies that
xi (t + 1) ≤ xj(t + 1).

2 If a split between two agents occurs at time t0, then the split between
these two agents will remain for all times t ≥ t0. Thus, after t0, the
agents behave independently and do not affect each other.

3 If a specific instance of the HK model reaches consensus, this implies
that |xi (t)− xj(t)| ≤ ε for all agents i , j and all times t ≥ 0.
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The Hegselmann - Krause Model - Results

In 2012, Bhattacharyya, Chazelle et al proved that the HK model
converges to an equlibrium.
They provided an upper bound of O(n3) on the convergence time, for
the 1-dimensional case, and poly(n, d) for the d-dimensional case,
where xi ∈ Rd .
They also provided a lower bound of Ω(n2) for the 1-dimensional case.
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The Deffuant - Weisbuch Model

Up until now all the models discussed were deterministic. In constract,
the Deffuant - Weisbuch (DW) model introduces randomness in
the process through which the agents’ opinions are updated.
We consider x(0) ∈ [0, 1]n, a threshold confidence ε > 0 and a
convergence parameter µ ∈ [0, 1

2 ].
At each time step t, two randomly agents are chosen and update
their opinions iff their difference in opinion is smaller than ε
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The Deffuant - Weisbuch Model

DW Model

xi (t) =
{

xi (t − 1), if |xi (t − 1)− xj(t − 1)| > ε

(1− µ) xi (t − 1) + µ xj(t − 1), if |xi (t − 1)− xj(t − 1)| ≤ ε

xj(t) =
{

xj(t − 1), if |xi (t − 1)− xj(t − 1)| > ε

(1− µ) xj(t − 1) + µ xi (t − 1), if |xi (t − 1)− xj(t − 1)| ≤ ε

DW Model - Matrix Form

x(t) =
{

x(t − 1), if |xi (t − 1)− xj(t − 1)| > ε

Aijx(t − 1), if |xi (t − 1)− xj(t − 1)| ≤ ε
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The Deffuant - Weisbuch Model

Aij is equal to the identity matrix, except for aii = ajj = 1− µ and
aij = aji = µ.
ε and µ are considered constants both in time and across all agents.
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The Deffuant - Weisbuch Model

Some important properties of the DW model are:

Aij = AT
ij , thus the DW model is a symmetric model.

The agents’ opinions are a convex combination of their previous
opinions.
The DW model differs from previous models in that it is:

Non-deterministic
Serial, since only agents i and j update their opinion at time t. The
remaining agents k 6= i , j do not update their opinions at time t.

While highly unlikely, it is possible for an agent k to not be chosen for
all times t up to a fixed time t0, therefore having
xk(t) = xk(0) ∀t ≤ t0.
In this case, agent k behaves as a fully-stubborn agent that never
updates his opinion.
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The Deffuant - Weisbuch Model - Results

In 2005, Lorenz proved that the DW model converges to an
equilibrium x∗.
In 2012, Chazelle provided an exponential upper bound on the
convergence time.
However, no significant upper or lower bounds are known on the
convergence time of the DW model.
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Current Work

Research focus currently is in understanding the dynamics of the
coevolutionary models.
Considerable work is being done on several variations of the HK
model.
Chazelle, Munagala, Fotakis et al have provided significant results on
the convergence properties of such variations.
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QUESTIONS ?
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