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From theory to practice...

zkSnark
Zero Knowledge Succinct Non Interactive Arguments Of
Knowledge

Use
Efficiently verify the correctness of computations without executing
them

Applications

Verify cloud computations (centralised, decentralised)
Anonymous bitcoin (ZCash)
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Application Model

A client owns input u (e.g query)
A server owns a private input w (e.g. private DB)
The client wishes to learn z = f(u,w) for a function f known
to both
Client: computation correctness (integrity)
Server: private input confidentiality

Client: its computing power should be confined to the bare
minimum of sending u and receiving z
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What zk-Snarks offer

Zero Knowledge: The client (verifier V ) learns nothing but
the validity of the computation
Succinct: The proof is tiny compared to the computation

the proof size is constant Oλ(1) (depends only on the security
parameter λ)
verification time is Oλ(|f|+ |u|+ |z|) and does not depend on
the running time of f

Non Interactive: The proofs are created without interaction
with the verifier and are publicly verifiable strings
Arguments: Soundness is guaranteed only against a
computationally bounded server (prover P )
of Knowledge: The proof cannot be constructed without
access to a witness
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Position in the complexity landscape...

NP = PCP[O(logn),O(1)]

One-Way Functions ⇒ NP ⊆ ZK (Goldreich, Micali,
Wigderson) (ZKP for 3-COL)
We can use PCP to construct ZK proofs (in theory)
The proofs are hugely inefficient
Can we construct SNARKs without using PCPs?
Yes, using QSPs and QAP - a better characterisation of NP
and cryptographic assumptions
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Main idea

1 Transform the verification of the computation to checking a relation between secret polynomials:

computation validity ↔ p(x)q(x) = s(x)r(x)

2 The verifier chooses a random evaluation point that must be kept secret:

p(x0)q(x0) = s(x0)r(x0)

3 Homomorphic Encryption to compute the evaluation of the polynomials at x0 by using Enc(x0):

Enc(p(x0))Enc(q(x0)) = Enc(s(x0))Enc(r(x0))

4 Randomise for ZK:

Enc(k + p(x0))Enc(k + q(x0)) = Enc(k + s(x0))Enc(kr(x0))
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ZK Proofs

ZK Proofs

Shaffi Goldwasser, Silvio Micali and Charles Rackoff, 1985
Interactive proof systems

Computation as a dialogue
Prover (P ): wants to prove that a string belongs to a
language
Verifier (V ): wants to check the proof st:

A correct proof convinces V with overwhelming probability
A wrong proof convinces V with negligible probability

Zero Knowledge Proofs
V is convinced without learning anything else

A breakthrough with many theoretical and practical applications
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ZK Proofs

An easy example

V is color blind
O P holds two identical balls of different color
Can the V be convinced of the different colors?
Yes

P hands the balls to V (commit)
V hides the balls behind his back, one in each hand
He randomly decides to switch hands or not
V presents the balls to P (challenge)
P responds if the balls have switched hands (response)
V accepts or not
Malicious P : Cheating Probability 50%
Repeat to reduce
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ZK Proofs

Definitions: Notation

Language L ∈ NP
Polynomial Turing Machine M
x ∈ L ⇔ ∃w ∈ {0, 1}p(|x|) : M(x,w) = 1

2 PPT TM P , V
< P(x,w),V(x) > is the interaction between P , V with
common public input x and private P input w.
outV< P(x,w),V(x) > is the output of V at the end of the
protocol
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ZK Proofs

Properties: Completeness and Soundness

Completeness
An honest P , convinces an honest V with certainty: If x ∈ L and
M(x,w) = 1 then: Pr[outV < P(x,w),V(x) > (x) = 1] = 1

Properties:Soundness
A malicious P (P∗), only convinces an honest V , with negligible
probability. If x /∈ L ���� ∀(P∗,w):
Pr[outV < P∗(x,w),V(x) > (x) = 1] = negl(λ)

Note:
Proof of Knowledge: P∗ is not PPT.
Argument of Knowledge: O P∗ is PPT.
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ZK Proofs

Properties:(Perfect) Zero Knowledge

V does not gain any more knowledge than the validity of the P ’s
claim.
For each V∗ there is a PPT S :
If x ∈ L and M(x,w) = 1 the random variables:
outV∗ < P(x,w),V∗(x) > (x) and
outV∗ < S(x),V∗(x) > (x)
follow the same distribution: We allow a malicious verifier that
does not follow the protocol and cheats in order to learn w

Intuition
What ever the V can learn after interacting with the P , can be
learnt by interacting with S (disregarding P )
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ZK Proofs

Constructing the simulator
A theoretical construction with practical applications

Reminder: S does not have access to the witness
S take P ’s place during the interaction with V
We cannot distinguish between <S ,V > and <P ,V >
We allow rewinds:
when V sets a challenge that cannot be answered by S then we stop
and rewind it
ZK if despite the rewind V accepts at some point
Why? Because he cannot distinguish between P (with the witness)
and S (without the witness)
As long as S is PPT
As a result V extracts the same information from P and S (nothing
to extract)
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ZK Proofs

Cryptographic Applications

Authentication without passwords
Proof that the user know the password
Transmission and processing is not needed

Proof that a ciphertext contains a particular message
Digital signatures
Anti-Malleability
In general: Proof that a player follows a protocol without
releasing any private input

13 / 68 (NTUA-advTCS) zk-SNARKs



Introduction Prerequisites The Proof Applications References

ZK Proofs

Σ - protocols

A 3 round protocol with an honest verifier and special soundness
1 Commit P commits to a value
2 Challenge V selects a random challenge uniformly from a

challenge space (honest)
3 Response P responds using the commitment, the witness and

the random challenge.

Special Soundness
Two execution of the protocol with the same commitment reveal
the witness
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ZK Proofs

Knowledge of DLOG:Schnorr’s protocol I

Protocol input

Public: g is a generator of an order q subgroup of Z∗
p with

hard DLP and a random h ∈ Z∗
p

Private: P knows a witness x ∈ Z∗
q st: h = gx (mod p)

Goal
Proof of knowledge of x without releasing any more information
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ZK Proofs

Knowledge of DLOG:Schnorr’s protocol II

Commit (P → V ):
Randomly Select t ∈R Z∗

q
Compute y = gt mod p.
Send y to V .

Challenge (V → P ):
Select and challenge with
c ∈R Z∗

q

Response (P → V ):
P computes s = t + cx mod q
and sends it to V

V accepts iff
gs = yhc (mod p)
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ZK Proofs

Properties I

Completeness
gs = gt+cx = gtgcx = yhc (mod p)

Soundness Probability that P ∗ cheats an honest verifier: 1
q -

negligible - repeat to decrease
Special soundness Let (y, c, s) nad (y, c′, s′) be two
successful protocol transcripts

gs = yhc ��� gs′ = yhc′ ⇒ gsh−c = gs′h−c′ ⇒

gs−xc = gs′−xc′ ⇒ s − xc = s′ − xc′ ⇒ x =
c′ − c
s − s

Since P can answer these 2 questions he knows DLOG of h
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ZK Proofs

Properties II

Zero knowledge: no
A cheating verifier does not choose randomly
but bases each challenge to the commitment received before S
In the simulated execution it will switch challenge
S will not be able to respond

How to add ZK:
V commits to randomness before the first message by P or
Challenge space {0, 1}

In this case V has only two options.
As a result the S can prepare for both.
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ZK Proofs

Properties III
It provides Honest Verifier Zero Knowledge. Let S without
knowledge of the witness x and an honest V

S follows the protocol and commits to y = gt, t ∈R Z∗
q

V selects c ∈R Z∗
q

If S can answer (which occurs with negligible probability) the
protocol resumes normally
Else the V is rewound (with the same random tape)
V selects the same c ∈R Z∗

q (because the random tape has not
changed)
S sends s = t. V will accept since yhc = gth−chc = gt = gs

The conversations (t ∈R Zq; gth−c, c ∈R Zq, t)
(t, c ∈R Zq; gt, c, t + xc) follow the same distribution
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ZK Proofs

Removing interactivity

Question
Can we do away with V ?

P generates the proof by himself
The proof is verifiable by anyone

Fiat Shamir Transform
Replace the challenge with the output of a pseudorandom function
on the commitment
In practice we use a hash function H
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ZK Proofs

Non-interactive Schnorr with the Fiat Shamir

Input

Public: g is a generator of an order q subgroup of ( Z∗
p with

hard DLP and h ∈ Z∗
p

Private:P has a witness x ∈ Z∗
q st: h = gx mod p

The Prover:
Randomly select t ∈R Zq,
Compute y = gt mod p
Compute c = H(y) where H is a hash function in Zq
Compute s = t + cx mod q
Release (h, c, s)
Anyone can verify that c = H(gsh−c)
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ZK Proofs

The common reference string

Both parties have access to a string of (random) data
This is created in a trusted way (e.g. through a secure multiparty
computation protocol)
The prover simulates the verifier challenge by selecting data from
the CRS
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Cryptography

Homomorphic Encryption Schemes
Applying a function on the ciphertexts yields the encryption of a
function on the plaintext

Enc(m1)⊗ Enc(m2) = Enc(m1 ⊕ m2)

Multiplicative Homomorphism in El Gamal:

Enc(m1) · Enc(m2) = (gr1 ,m1hr1) · (gr2 ,m2hr2)

= (gr1+r2 , (m1 · m2)hr1+r2)

Additive Homomorphism in El Gamal:

Enc(m1) · Enc(m2) = (gr1 , gm1hr1) · (gr2 , gm2hr2)

= (gr1+r2 , gm1+m2hr1+r2)
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Cryptography

Application - polynomials

Task
Let Enc(x) = gx where g is a suitable group generator and
p(x) =

∑d
i=0 aixi a polynomial

Two parties with knowledge of x0 and p(x) respectively can
compute Enc(p(x0))

The V (the party that knows x0) releases
Enc(x00), Enc(x10), · · · , Enc(xd

0)

into the common reference string
The P (the party that knows the coefficients) computes:

d∏
i=0

Enc(xi
0)

ai = Enc(
d∑

i=0

aixi
0) = Enc(p(x0))
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Cryptography

Pairings I

In general
Functions that map elements from source groups G1,G2 or G2 to a
destination group GT.

What is interesting: They transform difficult problems in G to easy
problems in GT.

Definition
A pairing is an efficiently calculable function e : G × G → GT st:

Bilinear: e(ga, gb) = e(g, g)ab where g ∈ G a, b ∈ Z
Non-Degenerate:If G =< g > then GT =< e(g, g) >
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Cryptography

Pairings II

In practice: G = E(Fp) and GT = Fpa

How to easily solve DDH
Input: (g, ga, gb, gc)
Check if gc = gab

Easily compute e(ga, gb) = e(g, g)ab

Compare with e(g, gc) = e(g, g)c

but the CDH remains hard

Observation
The pairing allows us to do a multiplication between ’encrypted’
values
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Cryptography

Application - check the correct evaluation of polynomials I

The V that knows x0:
computes and publishes into the CRS:

Enc(x00), Enc(x10), · · · , Enc(xd
0)

selects a scaling factor b
computes and publishes into the CRS:

Enc(bx00), Enc(bx10), · · · , Enc(bxd
0)

The P that knows p(x):
computes and publishes Enc(p(x0)), Enc(bp(x0))

The secrets b, x0 should be destroyed
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Cryptography

Application - check the correct evaluation of polynomials II

Check:
Use a pairing function e to compute:

e(Enc(p(x0)), Enc(b)) = e(g, g)bp(x0)

e(Enc(bp(x0)), Enc(1)) = e(g, g)bp(x0)

Observation

The homomorphic combination of encrypted polynomials
allows us to do additions
plus the multiplication from the pairing
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Cryptography

A ’new’ security assumption I

Let G a group of order q generated by g and x ∈R Zq. Let h = gx

Knowledge of exponents (Damgard 1991)
For any adversary A(q, g, h) that outputs a value (c, y) such that
y = cx, there exists an extractor B who on input B(q, g, h) outputs
s: c = gs
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Cryptography

A ’new’ security assumption II

Intuition

The exponent in question is s
Since y = cx and we do not know x the only way to have
come up with (c, y) is through s
That is: c = gs and y = hs

Between ZKP of DLOG equality and double DLOG knowledge
Non standard, but cannot be derived from standard
assumptions such as the DDH.
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Cryptography

KoE Relation to zk-SNARKs

There is no need to know x in order to validate knowledge of
exponent:

e(h, c) = e(g, y) = e(g, g)sx

The correspondence
C = Enc(p(x0)) = gp(x0) and
Y = Enc(bp(x0)) = gbp(x0)

If it does not hold then a cheating prover might come up with Y
without knowing p(x0)
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Cryptography

Remarks

Is it sound?
Answer: No - the prover can cheat by replacing p with any
polynomial
Is it zero knowledge?
Answer: No - it allows the verifier to learn Enc(p(x0))
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Cryptography

Evaluate polynomials and check in ZK
ZK: V must not even learn Enc(p(x0))

V selects b, x0 and computes:
Enc(x00), Enc(x10), · · · Enc(xd

0)

Enc(bx00), Enc(bx10), · · · Enc(bxd
0)

P selects a and computes:
Enc(a)Enc(p(x0)) = Enc(a + p(x0))

Enc(b)aEnc(bp(x0)) = Enc(ba)Enc(bp(x0)) = Enc(b(a + p(x0))))

Check the pairing step as before:
e(Enc(a + p(x0)), Enc(b)) = e(g, g)b(a+p(x0))

e(Enc(b(a + p(x0))), Enc(1)) = e(g, g)b(a+p(x0))
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Cryptography

R1CS

Definition
A system of rank-1 quadratic equations over F is a set of
constraints {(vj,wj, yj)}Nc

i=1 and n ∈ N where:
vj,wj, yj ∈ F1+Nv

n ≤ Nv

Satisfiability
A R1 system C is satisfiable on input c ∈ Fn if there is a witness
s ∈ FNv :

c = (c1, · · · , cn)

∀j ∈ Nc : vj· (1, c)× wj· (1, c) = yj· (1, c)
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Cryptography

Facts

BC to R1CS
Boolean circuit C : {0, 1}n × {0, 1}h × {0, 1} with α wires and β
(bilinear) gates → R1CS with with Nv = α and Nc = β + h + 1

AC to R1CS
Arithmetic circuit C : Fn × Fh × Fl with α wires and β (bilinear)
gates → R1CS with with Nv = α and Nc = β + l
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Cryptography

Quadratic Span Programs - QSP I

Definition
A QSP over a field F for inputs of length n consists of

2 sets of source polynomials:
V = {v0, · · · , vm},W = {w0, · · · ,wm}
the target polynomial: t
an injective function f : [n]× {0, 1} → [m]
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Cryptography

Quadratic Span Programs - QSP II

QSP Verification
An input u ∈ {0, 1}n is accepted by a QSP iff ∃ tuples
a = (a1, · · · , am), b = (b1, · · · , bm) ∈ Fm :

ak ∧ bk = 1, if ∃i : k = f(i, ui)

ak ∧ bk = 0, if ∃i : k = f(i, 1− ui)

t divides the linear combination va · wb where
va = v0 +

∑m
i=1 aivi,

wb = w0 +
∑m

i=1 biwi
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Cryptography

Quadratic Span Programs - QSP III
Remarks:

Check if a target polynomial divides a linear combination of
some given polynomials
f restricts which polynomials can be used in the linear
combination
The NP witness is the pair a, b
QSP Verification is NP-Complete
In practice:

Find h : th = va · wb ⇔ th − va · wb = 0
Check that it is a zero polynomial
Evaluate at a single point t(x0)h(x0)− va(x0) · wb(x0) = 0
(The number of roots is tiny compared to the number of field
elements)

38 / 68 (NTUA-advTCS) zk-SNARKs



Introduction Prerequisites The Proof Applications References

Cryptography

Quadratic Arithmetic Programs I

Definition
A QAP Q over a field F is:

3 sets of source polynomials V = {v0, · · · , vm},
W = {w0, · · · ,wm}, Y = {y0, · · · , ym}
the target polynomial t
a function f : {0, 1}n → {0, 1}n′
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Cryptography

Quadratic Arithmetic Programs II

Q computes f if: (c1, · · · , cn+n′) ∈ Fn+n′ is a valid assignment of
f’s inputs and outputs and there exist coefficients (cN+1, · · · , cm)
such that t(x) divides p(x) where:

p(x) = (v0(x) +
m∑

k=1

ckvk(x)) · (w0(x) +
m∑

k=1

ckwk(x))

−(y0(x) +
m∑

k=1

ckyk(x))

For simplicity: v(x) = v0(x) +
∑m

k=1 ckvk(x) etc.
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From Code to QAP

Process
Code → Algebraic Circuit → R1CS → QAP → ZKSnark

de f f ( x ) :
y=x∗∗3
r e t u r n x+y+5

Task
Prove that you executed f with input = 3
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Convert to circuit - Flattening

Convert code into a format that contains only commands of the
form:

x=y
x=y op z

As a result the function f becomes:
de f f ( x ) :

sym_1 = x ∗ x
y = sym_1 ∗ x
sym_2 = y + x
out = sym_2 + 5
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R1CS

Convert to R1CS

Rules

Each command can be considered as a logic gate and
represented as a relation between vectors
The vectors have as many elements as the total number of
variables in the command plus one (for constants)
Mapping vector [one, x, out, sym1, y, sym2]

Vector y is the left hand side
Vector v,w are the right hand sides
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R1CS

Application to example commands

Command
sym1 = x ∗ x

[one, x,out, sym1,y, sym2]

v = [0, 1,0, 0,0, 0]

w = [0, 1,0, 0,0, 0]

y = [0, 0,0, 1,0, 0]

Indeed c = [1, 3, 0, 9, 0, 0]
satisfies: cv · cw − cy = 0

Command
y = sym1 * x

[one, x,out, sym1,y, sym2]

v = [0, 0,0, 1,0, 0]

w = [0, 1,0, 0,0, 0]

y = [0, 0,0, 0,1, 0]

c = [1, 3, 0, 9, 27, 0]

44 / 68 (NTUA-advTCS) zk-SNARKs



Introduction Prerequisites The Proof Applications References

R1CS

Application to commands

Command
sym2 = y+x

[one, x,out, sym1,y, sym2]

v = [ 0,1, 0,0, 1,0]

w = [ 1,0, 0,0, 0,0]

y = [ 0,0, 0,0, 0,1]

Remark: addition is implied in
the dot product
c = [1, 3, 0, 9, 27, 30]

Command
out = sym2+5

[one, x,out, sym1,y, sym2]

v = [5, 0,0, 0,0, 1]

w = [1, 0,0, 0,0, 0]

y = [1, 0,0, 0,0, 0]
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R1CS

The final R1CS

V = {[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0], [5, 0, 0, 0, 0, 1]}
W = {[0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]}
Y = {[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0]}

The solution is the vector c = [1, 3, 35, 9, 27, 30]
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QAP

From Vectors To Polynomials

Use Lagrange interpolation to transform the sets of m vectors
with n elements into n polynomials of degree m − 1

Construct polynomial vj with values vj(i) = V[i][j] (value
element of vector i in position j)
For instance: v1(1) = 0, v1(2) = 0, v1(3) = 0, v1(4) = 5

v1(x) = 5
6x3 − 5x2 + 55

6 x − 5

v2(1) = 1, v2(2) = 0, v2(3) = 1, v2(4) = 0

v2(x) = −2
3x3 + 5x2 + 34

3 x + 8

Repeat for w, y
Finally add the polynomials together to obtain v,w, y
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QAP

From Vectors To Polynomials - Why?

Why? Because we can check all the constraints
simultaneously!
cv(x) · cw(X) = cy(x)
Define t(x) = cv(x) · cw(X)− cy(x)
This polynomial must be zero to all the points that
correspond to the logic gates
A multiple of the base polynomial (x − 1)(x − 2)...

48 / 68 (NTUA-advTCS) zk-SNARKs



Introduction Prerequisites The Proof Applications References

zkSNARK

Setup Phase I

Non interactiveness - Public verifiability
Fix the homomorphic encryption scheme, verifier, polynomials
V selects random field elements x0, b ∈ F
computes and publishes in the CRS:

{Enc(xk
0)}d

k=0 (in reality: d = 2 · 106)
{Enc(bxk

0)}d
k=0

{Enc(vk(x0)), Enc(bvk(x0))}m
k=1

{Enc(wk(x0)), Enc(bwk(x0))}m
k=1

{Enc(yk(x0)), Enc(byk(x0))}m
k=1

Enc(t(x0)), Enc(bt(x0))
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zkSNARK

Setup Phase II

selects random field values γ, βv, βw, βy in order to ensure
soundness (i.e. that the correct polynomials were evaluated)
computes and publishes in the CRS:

Enc(γ), Enc(βvγ), Enc(βwγ), Enc(βyγ)
{Enc(βvvk(x0))}m

k=1

{Enc(βwwk(x0))}m
k=1

{Enc(βyyk(x0))}m
k=1

Enc(βvt(x0)), Enc(βwt(x0)), Enc(βyt(x0))
All computations in the proof must use only these elements
Performance: O(|C|)
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zkSNARK

The prover
Evaluates the circuit for the function and obtains the output
As a result the P knows the values of ci
Solves for h

Define:

Imid: the indices that are not in IO of f ({N + 1 · · ·m})
vmid(x) =

∑
k∈Imid

ckvk(x)
Generate the proof (9 encrypted values):

Vmid = Enc(vmid(x0)), W = Enc(w(x0)), Y = Enc(y(x0)),
H = Enc(h(x0))
V′

mid = Enc(bvmid(x0)), W′
= Enc(bw(x0)), Y′

= Enc(by(x0)),
H′

= Enc(bh(x0))
K = Enc(βvvmid(x0) + βww(x0) + βyy(x0))

All these values can be computed by leveraging the homomorphic properties of the underlying cryptosystem
from what is on the CRS
Performance: O(|C|) + O(|C|log2(|C|)
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zkSNARK

The verifier

Retrieves the values of ci from the input u and the output
Computes Enc(vio(x0)) = Enc(

∑
k/∈Imid

ckvk(x0))
Verifies the following equations using the pairing function:

e(V′

mid, Enc(1)) = e(Vmid, Enc(b))
e(W′

, Enc(1)) = e(W, Enc(b)),
e(H′

, Enc(1)) = e(H, Enc(b))
e(Y′

, Enc(1)) = e(Y, Enc(b))
For soundness check:
e(Enc(γ),K) =
e(Enc(βvγ),Vmid) · e(Enc(βwγ),W) · e(Enc(βyγ),Y)
Check the QAP relation:
e(Enc(v0(x0))·Enc(vio(x0))·Vmid,Enc(w0(x0)W))

e(y0(x0)Y,Enc(1)) = e(H, Enc(t(x0))
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zkSNARK

Completeness

e(Enc(γ),K) =
e(Enc(γ), Enc(βvvmid(x0) + βww(x0) + βyy(x0))) =

e(gγ , gβvvmid(x0)+βww(x0)+βyy(x0)) =

e(g, g)γ·(βvvmid(x0)+βww(x0)+βyy(x0))

e(Enc(βvγ),Vmid) · e(Enc(βwγ),W) · e(Enc(βyγ),Y) =
e(Enc(βvγ, Enc(vmid(x0)))e(Enc(βwγ), Enc(w(x0)))e(Enc(βyγ), Enc(y(x0))) =

e(g, g)βvγvmid(x0) · e(g, g)βwγw(x0) · e(g, g)βyγy(x0) =

e(g, g)βvγvmid(x0)+βwγw(x0)+βyγy(x0)
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zkSNARK

Completeness for the QAP Relation I

The parts of the left hand pairings:

Enc(v0(x0))Enc(vio(x0))Vmid = Enc(v0(x0))Enc(vio(x0))Enc(vmid(x0)) =

Enc(v0(x0) + vio(x0) + vmid(x0)) = Enc(v0(x0) +
m∑

i=1

civi(x0)) = Enc(v(x0))

Enc(w0(x0))W = Enc(w0(x0))Enc(w(x0)) =

Enc(w0(x0) +
m∑

i=1

(ciwi(x0))) = Enc(w(x0))
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zkSNARK

Completeness for the QAP Relation II

Enc(y0(x0))Y = Enc(y0(x0))Enc(y(x0)) =

Enc(y0(x0) +
m∑

i=1

(ciyi(x0))) = Enc(y(x0))

Left hand side: e(Enc(v(x0)), Enc(w(x0))) = e(g, g)v(x0)·w(x0)−y(x0)

Right hand side:
e(H, Enc(t(x0))) = e(gh(x0), gt(x0)) = e(g, g)h(x0)t(x0)

55 / 68 (NTUA-advTCS) zk-SNARKs



Introduction Prerequisites The Proof Applications References

zkSNARK

Intuition between soundness

The relation
e(Enc(γ),K) = e(Enc(βvγ),Vmid) ·e(Enc(βwγ),W) ·e(Enc(βyγ),Y)
protects from a prover that tries to cheat by using another
polynomial.

The values βv, βw, βy do not appear in the CRS in isolation
The expression βvvmid(x0) + βww(x0)) + βyy(x0) can only be
encrypted from the respected values in the CRS in encrypted
form mixed with γ
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zkSNARK

Shifting for Zero Knowledge

The P chooses δmid, δw, δy.
Define

Vδmid = Enc(vmid(x0) + δmidt(x0))
wδ(x0) = w(x0) + δwt(x0)
yδ(x0) = y(x0) + δyt(x0)
As a result Vmid, W, Y are randomised

The equation v(x0)w(x0)− y(x0) = h(x0)t(x0) must still hold
To achieve this we replace H = Enc(h(x0)) in the CRS accordingly
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zkSNARK

vnTinyRAM

zk-SNARKs for a general purpose CPU
Circuit generator: Translate program execution into sequence
of circuits
Compose zk-SNARKs for these circuits
Bound on the running time
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Verifying cloud computations

Pinnochio: A cloud based lie detector I

General purpose computation validator
Client: represents functions as a public evaluation key
Client: provides input or ZKPoK of some property of the input
Server: evaluates the computation and provides proof
(signature)
Compiler toolchain to use with C-programs
Transforms to QAP, QSP
Use:

Protect against malicious servers
Extra server feature (at a higher price)

Performance
Setup: Linear in the size of the computation
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Verifying cloud computations

Pinnochio: A cloud based lie detector II

Proof Size: constant (288 bytes)
Does not depend on function
Does not depend on input/output size

Verification: Linear in the size of the input and output
typically 10ms (5 - 7 orders of magnitude gain)
Proof generation: up to 60 times fewer work
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zCash

Bitcoin’s problem I

Bitcoin is not anonymous
All transactions are recorded in the blockchain
Users use pseudonyms
Deanonymization

The structure of the transaction graph
Real world information (value, dates, blockchain exit points)

Bitcoins are not fully fungible(?)
In the protocol itself all coins have the same value

but...
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zCash

Bitcoin’s problem II

Each coin has a history than can be traced
This might have an effect on the ability to spend the coins or
on their value (e.g. Wannacry ransomware)

A first solutions: mixes
Users entrust their coins to a ’trusted’ entity
They receive coins with the same value but different origins
Many problems (fees, delays, trust)
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zCash

ZeroCoin

A decentralised mix
Two kinds of coins: base and anonymous
Each anonymous transaction is accompanied by a ZK proof
that the coin spent can be linked to a valid base coin

The base coin comes from a valid transaction
The base coin has not been spent

Problems:
Performance bottleneck for ZK proofs
Functionality: Does not support all denominations etc.
Anonymity: Does not hide metadata

Transactions occur using the base coin and are periodically washed
in the distributed mix
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zCash

zCash=Zerocoin+SNARKs

Performance
288 byte proof
895MB CRS
transaction < 1KB (vs 45KB in Zerocoin)
6ms verification (vs 450ms in Zerocoin)
40sec to make a transaction
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zCash

zCash CRS generation ceremony I

Goal

Generate x0 in CRS: gx10 , · · · , gxd
0

No participant must learn the entire x0
All shares of x0 must be later destroyed
A single honest participant is required
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zCash

zCash CRS generation ceremony II

The protocol

Each participant generates a random si

The first participant computes and publishes gs1 , · · · , gsd
1 e

The second partipant computes gs1s2 , · · · , gsd
1s2d

· · ·
The last participant computes gs1s2···sn , · · · , gsd

1sd
2···snd

x0 = s1s2 · · · sn
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zCash

zCash CRS generation ceremony III

Validation
A partipant might cheat by computing gsp·s‘

i . validation can be
done using pairings.

e(gsi , gsi) = e(g, g)s2i

e(g, gs2i ) = e(g, g)s2i

This check is repeated for all powers
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