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Basic Definitions

There are many problems where we want to count the number of
solutions.
Of course, this is more “difficult” than finding if a solution exists!
We want to define the class of counting the number of solutions to NP
problems:

Definition
A function f : {0, 1}∗ → N is in #P if there exists a polynomial p : N → N and
a polynomial-time Turing Machine M such that for every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x|) : M(x , y) = 1}|

Chalki Angeliki Counting Complexity: #P and subclasses
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Basic Definitions

Definition (Reductions between functions)

Cook (poly-time Turing) f ≤p
T g : f ∈ FPg .

In specific, f ≤p
1−T g ⇔ ∃h1, h2 ∈ FP, ∀x f (x) = h1(x , g(h2(x))).

Karp (poly-time many-one) f ≤p
m g : ∃h ∈ FP, ∀x f (x) = g(h(x)).

There are two notions of #P-completeness.
The counting versions of all known NP-complete problems are
#P-complete! No counterexamples to this phenomenon are known, so it
remains a possibility that this empirically observed relationship is actually
a theorem.
Valiant presented a Cook reduction with one oracle call from any problem
in #P to #Perfect Matchings [Va79].
There are #P-complete problems, the decision version of which is in P:
#Perfect Matchings, #DNF, #Independent Sets.

Chalki Angeliki Counting Complexity: #P and subclasses
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Toda’s Theorem

#P is of high complexity.

Theorem

PH ⊆ P#P[1]

FP ⊆ #P ⊆ PSPACE.
If #P=FP, then P=NP.
If P=PSPACE, then #P=FP.

Chalki Angeliki Counting Complexity: #P and subclasses
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Relativization [Fo97]

There exists an oracle A, such that PA = PSPACEA.
If P=PSPACE, then #P=P=PSPACE and #P is closed
under Cook reductions.
Any proof that #P differs from P, or PSPACE, or that #P
is not closed under Cook reductions requires nonrelativizing
techniques.

Chalki Angeliki Counting Complexity: #P and subclasses
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Basic Definitions

Definition
A Randomized Approximation Scheme (RAS) for a function
f : Σ∗ → N is a Probabilistic Turing Machine that takes as input a
pair (x , ε) ∈ Σ∗ × (0, 1) and produces as output an integer random
variable Y satisfying the condition:

Pr
[
e−εf (x) ≤ Y ≤ eεf (x)

]
≥ 3

4

A RAS is said to be fully polynomial (FPRAS) if it runs in time
poly(|x |, ε−1).

Chalki Angeliki Counting Complexity: #P and subclasses
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Approximability of counting functions in #P

There are problems in #P that can be solved exactly using a
polynomial-time deterministic algorithm, such as #Spanning
Trees, and #Perfect Matchings in planar graphs.
There are #P-complete problems under Cook reductions
which admit FPRAS, such as #Matchings, and #DNF.
There is no polynomial-time deterministic algorithm for a
#P-complete problem, unless P=NP (and #P=FP).
There is no FPRAS for #SAT unless NP=RP [Zuckerman96].
There is no FPRAS for a #P-complete problem under Karp
reductions, unless NP=RP.
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Basic Definitions

Definition
An approximation-preserving reduction from f to g is a
probabilistic oracle Turing Machine M that takes as input a pair
(x , ε) ∈ Σ∗ × (0, 1), and satisfies the following conditions:

1 Every oracle call made by M is of the form (w , δ), where w is
an instance of g , and δ ∈ (0, 1) is an error bound satisfying
δ−1 ≤ poly(|x |, ε−1).

2 M is a RAS for f whenever its oracle is a RAS for g .
3 M runs in poly(|x |, ε−1).

If such a reduction from f to g exists, we write f ≤AP g (AP-reducible).
If (f ≤AP g) and (g ≤AP f ), we write f ≡AP g (AP-interreducible).

Chalki Angeliki Counting Complexity: #P and subclasses
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The classes TotP and SpanL

#P-complete problems under AP reductions

Theorem
Let A be an NP-complete decision problem. Then the
corresponding counting problem, #A, is complete for #P with
respect to AP-reducibility.

Proof Sketch.
1 #A ∈ #P
2 Also, #SAT is AP-reducible to #A:

#SAT can be approximated, in the FPRAS sense, by a PTM
M equipped with an oracle for the decision problem of SAT
[VV86].
This oracle can be replaced by an approximate counting oracle
(RAS) for #A.
Thus, M consists an approximation-preserving reduction from
#SAT to #A.

Chalki Angeliki Counting Complexity: #P and subclasses
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Relative complexity of approximate counting

In [DGGJ03] three classes of AP-interreducible problems are
studied:

1 The first is the class of counting problems that admit an
FPRAS.

2 The second is the class of counting problems
AP-interreducible with #SAT.

3 The third is the class of counting problems AP-interreducible
with #BIS.

Chalki Angeliki Counting Complexity: #P and subclasses
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Counting problems AP-interriducible with #SAT

Theorem

#IS ≡AP #SAT

Proof.
1 #LARGEIS ≡ #SAT .
2 #LARGEIS ≤AP #IS:

Let m and G = (V , E), |V | = n, be an instance of #LARGEIS.
Construct G ′ = (V ′, E ′) such that:
V ′ = V × [r ], and
E ′ = {{(u, i), (v , j)} : u, v ∈ E and i , j ∈ [r ]}.

Chalki Angeliki Counting Complexity: #P and subclasses
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Counting problems AP-interriducible with #SAT

Proof cont. An independent set I ′ in G ′ projects to an independent set
I = π(I ′) in G in the following way:

I = π(I ′) = {v ∈ V : there exists i ∈ [r ] such that (v , i) ∈ I ′}

For every k-sized independent set in G there are exactly (2r − 1)k

independent sets in G ′ that project to it.
Let Im(G) the set of all m-sized independent sets in G , and I(G ′) the set
of all independent sets in G . Then:

|I(G ′)| ≥ (2r − 1)m · |Im(G)|

On the other hand, at most (2r − 1)m−1 independent sets I ′ in G ′ project
to each independent set I = π(I ′) in G of size < m. Thus:

|I(G ′)| ≤ (2r − 1)m · |Im(G)| + (2r − 1)m−1 · 2n

Chalki Angeliki Counting Complexity: #P and subclasses
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Counting problems AP-interriducible with #SAT

Proof cont. We have:

|I(G ′)| ≥ (2r − 1)m · |Im(G)| (1)

|I(G ′)| ≤ (2r − 1)m · |Im(G)| + (2r − 1)m−1 · 2n (2)

If we choose r ≥ n + 3, then |Im(G)| ≤ |I(G′)|
(2r −1)m ≤ |Im(G)| + 1

4 .
Thus we can take,

|Im(G)| =
⌊

|I(G ′)|
(2r − 1)m

⌋

Chalki Angeliki Counting Complexity: #P and subclasses
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Counting problems AP-interriducible with #SAT

Theorem
#IS is complete for #P with respect to AP-reducibility.
#IS remains complete for #P with respect to AP-reducibility
even when restricted to graphs of maximum degree 25.
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#P problems with FPRAS

An unbiased estimator for #DNF using sampling:
Let U be the universe of possible assignments for a DNF formula f , and S ⊆ U
the set of satisfying assignments, i.e. #f = |S|.

1 Repeat the following t times. At the i-th iteration:

Pick u uniformly at random from U.
If u belongs to S, Xi = 1.
If not, count Xi = 0.

2 Take an average of the above counts, X̃ =
∑t

i=1
Xi
t , and return that as

an estimate of |S|
|U| .

Obviously, E [Xi ] = Pr
(
{u ∈ S}

)
· 1 + Pr

(
{x /∈ S}

)
· 0 = |S|

|U| · 1 = |S|
|U| and

E [X̃ ] = |S|
|U| . One can use the value X̃ · |U| as an estimator for the size of |S|.

Chalki Angeliki Counting Complexity: #P and subclasses
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FPRAS for #DNF

Theorem

Let µ = |S|
|U| and ε 6 2. If t > (1/µ) · (4 · ln(2/δ)/ε2) then the

algorithm described above is an ε, δ approximation algorithm.

1
µ = |U|

|S| can be exponential in the size of the input.
We decrease the size of the universe!

Chalki Angeliki Counting Complexity: #P and subclasses
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1. Let Si be the set of truth assignments which satisfy clause Ci .
2. Let S =

∪m
i=1 Si . Observe that #f = |S|.

3. Let U ′ = S1 ⊎ ... ⊎ Sm, i.e. U ′ is the disjoint union of the Si ’s.
4. An element aj ∈ U ′ is represented by (aj , i), where aj ∈ Si and 1 6 i 6 m.
5. U ′ contains only the satisfying assignments. However,
|U ′| =

∑m
i=1 |Si | ≥ |S|, since if an assignment aj satisfies k clauses, U ′ contains

k copies of aj .
6. For each row containing at least one star, make the first one a ‘special’ star
∗. If Ci is the first clause that is satisfied by aj , then (aj , i) is ∗.

Figure: The number of rows that contain at least one * is equal to |S|, and the number of special stars is
equal to |S|.
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To count the number of special stars we use the same idea as before:
1 Repeat the following t times. At the i-th iteration:

Sample an (aj , i) (a star ∗) uniformly at random from U ′.
If (aj , i) is a special star (∗), Xi = 1.
If not, count Xi = 0.

2 Take an average of the above counts, X̃ =
∑t

i=1
Xi
t , and return that as

an estimate of |S|
|U′| .

The value X̃ · |U ′| can be used as an estimator for the size of |S|.

Now 1
µ

= |U′|
|S| ≤ m , where m is the number of clauses in f .

Chalki Angeliki Counting Complexity: #P and subclasses
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For picking up an (aj , i) (a star ∗) uniformly at random we use the
following algorithm:

1 Compute |Si |, for every 1 ≤ i ≤ m.
2 Pick i with probability |Si |∑

i |Si |
.

3 Pick a random assignment satisfying the corresponding clause
Ci .

This concludes to picking a satisfying assignment with probability
1

|U′| .

The above procedure is an FPRAS for #DNF.
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Counting problems AP-interreducible with #BIS

#P4-COL Definition
Instance: A graph G .
Output: The number of P4 colourings of G , where P4 is the path
of length 3.

#DOWNSETS Definition
Instance: A partially ordered set (X ,≼).
Output: The number of downsets in (X ,≼).

#1P1NSAT Definition
Instance: A CNF Boolean formula ϕ, with at most one unnegated
literal per clause, and at most one negated literal.
Output: The number of satisfying assignments to ϕ.
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Definition of H-colourings

Definition
An H-colouring of a graph G is simply a homomorphism
f : G → H:

(u, v) ∈ EG ⇒ (f (u), f (v)) ∈ EH

Regard the vertices of H as representing colours, then f : G → H
induces a q-colouring of G that respects the structure of H:
two colours may be adjacent in G only if the corresponding vertices
are adjacent in H.

Kq -colourings, where Kq is the complete q-vertex graph, are
simply the usual q-colourings.
K 1

2 -colourings, where K 1
2 is K2 with one loop added,

correspond to independent sets.
Chalki Angeliki Counting Complexity: #P and subclasses
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Counting problems AP-interreducible with #BIS

Definition
The problems #BIS, #P4-COL, #DOWNSETS, #1P1NSAT are
all AP-interreducible.
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A Logical Characterisation #BIS and its relatives

A counting problem is identified with a sentence ϕ in FO
Logic, an instance with a model A, and solutions can be
counted by counting relations that make ϕ true in A.
Standard Definitions:

Vocabulary: σ = {R̃0, . . . R̃k−1}
R̃i ’s are relation symbol of arities r0, . . . , rk−1
Structure A = (A,R0, . . . ,Rk−1) over σ consists a universe A
Each relation Ri ⊆ Ari is an interpretation of R̃i .

We present counting problems as structures over suitable
vocabularies:

Example
An instance of #IS is a graph which can be 0regarded as a
structure A = (A,∼), where A is the vertex set, and ”∼” is the
symmetric binary relation of adjacency.
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A Logical Characterisation #BIS and its relatives

The solutions to be counted are represented as sequences of
relations T = (T1, . . . ,Tr−1) and first-order variables
z = (z0, . . . , zm−1).

Definition
A counting problem f (from structures over σ to N) is in the class
#FO if it can be expressed as:

f (A) = |{(T, z) : A |= ϕ(z,T)}|

where ϕ is a FO formula with relation symbols from σ ∪ T and
(free) variables from z.
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A Logical Characterisation #BIS and its relatives

Example
If we encode an IS as a unary relation I, then #IS:

fIS(A) = |{(I) : A |= ∀x , y : x ∼ y ⇒ ¬I(x) ∨ ¬I(y)}|

#IS is in the subclass #Π1 ⊆ #FO (since the formula
contains only universal quantification).
In general, we have a (strict) hierarchy of subclasses:

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO = #P

All functions in #Σ1 admit an FPRAS!
All AP-interreducible problems we saw are in the (syntactically
restricted) subclass #RHΠ1 ⊆ #Π1:

Chalki Angeliki Counting Complexity: #P and subclasses



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Class #P
Relative Complexity of Approximate Counting Problems

The classes TotP and SpanL

A Logical Characterisation #BIS and its relatives

Definition
A counting problem f is in the class #RHΠ1 if it can be expressed
in the form:

f (A) = |{(T, z) : A |= ∀y : ψ(y, z,T)}|

where ψ is an unquantified CNF formula in which each clause has
at most one occurrence of an unnegated relation symbol from T,
and at most one occurrence of a negated relation symbol from T.

”RH” stands for ”Restricted Horn”
The restriction on clauses of ψ applies only to terms involving
symbols from T.

Chalki Angeliki Counting Complexity: #P and subclasses
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A Logical Characterisation #BIS and its relatives

An instance of #DOWNSETS can be expressed as a structure
A = (A,≼).
Then, #DOWNSETS ∈ #RHΠ1, since the number of
downsets may be expressed as:

fDS(A) = |{(D) : A |= ∀x , y ∈ A : D(x) ∧ (y ≼ x) → D(y)}|

An instance of #BIS can be expressed as a structure
A = (A,≼).
Then, #BIS ∈ #RHΠ1, since:

fBIS(A) = |{(X ) : A |= ∀x , y ∈ A : L(x)∧(y ≼ x)∧X (x) → X (y)}|

Chalki Angeliki Counting Complexity: #P and subclasses
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A Logical Characterisation #BIS and its relatives

Theorem
#1P1NSAT is complete for #RHΠ1 under Karp reductions.
The problems #BIS, #P4-COL, #DOWNSETS, #1P1NSAT
are all complete for #RHΠ1, with respect to AP-reducibility.

Chalki Angeliki Counting Complexity: #P and subclasses
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Definitions of #PE and TotP

Definitions

The class #PE contains the functions of #P, the decision version of
which are in P.
The definition of TotP involves a function associated with every PNTM
M:

totM(x) = #(paths of M on input x) − 1
Then, TotP = {totM |M is a PNTM}.

#PE contains all hard-to-count-easy-to-decide problems.
FP ⊆ TotP ⊆ #PE ⊆ #P. Inclusions are proper, unless P = NP.
FPTotP = FP#PE = FP#P.

Chalki Angeliki Counting Complexity: #P and subclasses
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Functions in TotP

Theorem
#Perfect Matchings is in TotP.

Figure: The computation tree of the nondeterministic algorithm for #Perfect Matchings for an input graph
with 3 perfect matchings.

Chalki Angeliki Counting Complexity: #P and subclasses
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Functions in TotP

Theorem
#DNF, #NonCliques are in TotP.

Theorem
TotP is exactly the closure under Karp reductions of #PESR .

Chalki Angeliki Counting Complexity: #P and subclasses
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The class SpanL

Definition
Let the function

spanM(x) = the number of different valid outputs of M on input x

which is associated with a nondeterministic transducer M.
Then, SpanL={spanM |M is some NL transducer M}.

Definition
#NFA:
Input: An encoding of an NFA M and a string x ∈ {0, 1}∗.
Output: The number of words ≤ x accepted by M.

Theorem
#NFA is complete for SpanL under logspace Karp reductions.

Chalki Angeliki Counting Complexity: #P and subclasses
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SpanL is a hard counting class

Theorem
#NFA is #P-complete with respect to Cook reducibility.

Proof. #DNF ≤p
T #NFA.

Let f be a boolean formula in disjunctive normal form. Let x1, ..., xm and
C1, ..., Cl be the variables and the clauses of f .
We construct an NFA, the language of which is exactly the satisfying
assignments of f .

For each Ci we construct an NFA Mi .
Mi consists of a chain of m + 1 states, s0 i , ..., smi , s0 i is the start state
and smi the accepting state.
The edge (sj i , sj+1 i) is labelled 1 if xj+1 ∈ Ci , 0 if x j+1 ∈ Ci , and 0, 1
otherwise.

1. Mi accepts exactly the strings corresponding to truth assignments for Ci .
Let M be the NFA with a start state s and an ϵ-transition to the start state s0 i
for each 1 6 i 6 l . The final states are exactly the final states of each Mi .
2. M accepts exactly the strings corresponding to satisfying assignments of f
and #NFA(M, m) = #DFA(f ).

Chalki Angeliki Counting Complexity: #P and subclasses
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The complexity of #NFA

There exists a nO(logn) randomised approximation scheme for
#NFA.
There exists a nO(logn) almost uniform generator for
R#NFAM = {

(
(M, 1m), x

)
: x ∈ {0, 1}m and x ∈ L(M)}.

Chalki Angeliki Counting Complexity: #P and subclasses
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The class SpanL

Theorem
#L ⊆ SpanL ⊆ TotP.
FPSpanL[1] = FPTotP[1] = FP#P[1].
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