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The Class #P

Basic Definitions

@ There are many problems where we want to count the number of
solutions.

@ Of course, this is more “difficult” than finding if a solution exists!

@ We want to define the class of counting the number of solutions to NP
problems:

Definition

A function f : {0,1}* — N is in #P if there exists a polynomial p: N — N and
a polynomial-time Turing Machine M such that for every x € {0,1}":

f(x) = [{y € {0,137V M(x,y) = 1}|
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The Class #P

Basic Definitions

Definition (Reductions between functions)

@ Cook (poly-time Turing) f <% g: f € FP5.
In specific, f <§ ; g < 3h1, ho € FP, Vx f(x) = hi(x, g(h2(x))).

@ Karp (poly-time many-one) f <, g: 3h € FP, Vx f(x) = g(h(x)).

@ There are two notions of #P-completeness.

@ The counting versions of all known NP-complete problems are
#P-complete! No counterexamples to this phenomenon are known, so it
remains a possibility that this empirically observed relationship is actually
a theorem.

@ Valiant presented a Cook reduction with one oracle call from any problem
in #P to #Perfect Matchings [Va79].

@ There are #P-complete problems, the decision version of which is in P:
#Perfect Matchings, #DNF, #Independent Sets.
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The Class #P

Toda's Theorem

#P is of high complexity.

PH C p#Pl

o FP C #P C PSPACE.
o If #P=FP, then P=NP.
o If P=PSPACE, then #P=FP.
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The Class #P

Relativization [Fo97]

@ There exists an oracle A, such that PA = PSPACE”.
o If P=PSPACE, then #P=P=PSPACE and #P is closed
under Cook reductions.

@ Any proof that #P differs from P, or PSPACE, or that #P
is not closed under Cook reductions requires nonrelativizing
techniques.
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Relative Complexity of Approximate Counting Problems

Basic Definitions

Definition

A Randomized Approximation Scheme (RAS) for a function

f :¥* — N is a Probabilistic Turing Machine that takes as input a
pair (x,e) € £* x (0,1) and produces as output an integer random
variable Y satisfying the condition:

Pre ®f(x) <Y < ef(x)] >

W

A RAS is said to be fully polynomial (FPRAS) if it runs in time
poly(|x|,e71).
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Relative Complexity of Approximate Counting Problems

Approximability of counting functions in #P

@ There are problems in #P that can be solved exactly using a
polynomial-time deterministic algorithm, such as #Spanning
Trees, and #Perfect Matchings in planar graphs.

@ There are #P-complete problems under Cook reductions
which admit FPRAS, such as #Matchings, and #DNF.

@ There is no polynomial-time deterministic algorithm for a
#P-complete problem, unless P=NP (and #P=FP).

@ There is no FPRAS for #SAT unless NP=RP [Zuckerman96].

@ There is no FPRAS for a #P-complete problem under Karp
reductions, unless NP=RP.
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Relative Complexity of Approximate Counting Problems

Basic Definitions

Definition

An approximation-preserving reduction from f to g is a
probabilistic oracle Turing Machine M that takes as input a pair
(x,€) € £* x (0,1), and satisfies the following conditions:

@ Every oracle call made by M is of the form (w,d), where w is
an instance of g, and ¢ € (0,1) is an error bound satisfying
5 < poly(|x|,e71).

@ M is a RAS for f whenever its oracle is a RAS for g.

© M runs in poly(|x|,e71).

If such a reduction from f to g exists, we write f <ap g (AP-reducible).
If (f <ap g) and (g <ap f), we write f =ap g (AP-interreducible).
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Relative Complexity of Approximate Counting Problems

#P-complete problems under AP reductions

Let A be an NP-complete decision problem. Then the
corresponding counting problem, #A, is complete for #P with
respect to AP-reducibility.

Proof Sketch.
Q #Ac#P
@ Also, #SAT is AP-reducible to #A:
e #SAT can be approximated, in the FPRAS sense, by a PTM
M equipped with an oracle for the decision problem of SAT
[VV86].
e This oracle can be replaced by an approximate counting oracle
(RAS) for #A.
e Thus, M consists an approximation-preserving reduction from
#SAT to #A.
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Relative Complexity of Approximate Counting Problems

Relative complexity of approximate counting

In [DGGJO03] three classes of AP-interreducible problems are
studied:

© The first is the class of counting problems that admit an
FPRAS.

@ The second is the class of counting problems
AP-interreducible with #SAT.

© The third is the class of counting problems AP-interreducible
with #BIS.
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interriducible with #SAT

#IS =AP #SAT

Proof.
@ #LARGEIS = #SAT.

@ #LARGEIS <ap #I5:
Let m and G = (V, E), |V| = n, be an instance of #LARGEIS.
Construct G’ = (V' E’) such that:
V' =V x[r], and
E' = {{(u,i),(v,j)} : u,v € E and i,j € [r]}.
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interriducible with #SAT

Proof cont. An independent set I’ in G’ projects to an independent set
I =x(I') in G in the following way:

I =n(l'")={v e V: there exists i € [r] such that (v,i) € I'}

@ For every k-sized independent set in G there are exactly (2" — 1)

independent sets in G’ that project to it.

@ Let /n(G) the set of all m-sized independent sets in G, and /(G’) the set
of all independent sets in G. Then:

1G] > (2" =1)7 - |Im(G)]

@ On the other hand, at most (2" — 1) ! independent sets I’ in G’ project
to each independent set | = w(/') in G of size < m. Thus:

(G < (2 =17 |In(G)] + (2" =1)" - 2"
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interriducible with #SAT

Proof cont. We have:
(G > (2" =1)" - [In(G)] (1)
NG <@ =1)" [Im (G)I +-1)"2"(2)

If we choose r > n—+ 3, then |/,(G)| < 2, 1' < |In(G)| + 3
Thus we can take,
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interriducible with #SAT

@ #IS is complete for #P with respect to AP-reducibility.

@ #IS remains complete for #P with respect to AP-reducibility
even when restricted to graphs of maximum degree 25.
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Relative Complexity of Approximate Counting Problems

#P problems with FPRAS

An unbiased estimator for #DNF using sampling:
Let U be the universe of possible assignments for a DNF formula f, and S C U
the set of satisfying assignments, i.e. #f =|S|.

@ Repeat the following t times. At the i-th iteration:

e Pick u uniformly at random from U.
o If ubelongsto S, X; = 1.
e If not, count X; = 0.

@ Take an average of the above counts, X = Z, 1 t", and return that as
an estimate of BI‘
Obviously, E[X;] = Pr({u € S}) -1+ Pr({x ¢ 5}) 0= 7 1= % and
E[X] = % One can use the value X - |U| as an estimator for the size of |S|.
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Relative Complexity of Approximate Counting Problems

FPRAS for #DNF

Let p = ||LSQ and e < 2. If t > (1/u) - (4-In(2/5)/€?) then the
algorithm described above is an ¢, § approximation algorithm.

= % can be exponential in the size of the input.

1
o
We decrease the size of the universe!
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Relative Complexity of Approximate Counting Problems

. Let S; be the set of truth assignments which satisfy clause G;.

. Let S=J", Si. Observe that #f = |S|.

.Let U =51 W...1WS,, i.e. U is the disjoint union of the S;'s.

. An element a; € U’ is represented by (a;, ), where a; € S; and 1 < i < m.

. U’ contains only the satisfying assignments. However,

|U'| =" |Si| > |S], since if an assignment a; satisfies k clauses, U’ contains
k copies of aj.

6. For each row containing at least one star, make the first one a ‘special’ star
*. If G is the first clause that is satisfied by aj, then (a;, /) is *.

g~ wWwN =

51 Sy S,‘), Sm

FIgU F€. The number of rows that contain at least one * is equal to |S|, and the number of special stars is
equal to |S].
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Relative Complexity of Approximate Counting Problems

To count the number of special stars we use the same idea as before:
@ Repeat the following t times. At the i-th iteration:
e Sample an (a;, i) (a star *) uniformly at random from U’
If (aj,i) is a special star (%), X; = 1.
If not, count X; = 0.

@ Take an average of the above counts, X = Z, 1 t", and return that as
an estimate of |U,|.

The value X - |U’| can be used as an estimator for the size of |S|.

v’ . .
Now i = |‘S“ < m , where m is the number of clauses in f.
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Relative Complexity of Approximate Counting Problems

For picking up an (aj, i) (a star %) uniformly at random we use the
following algorithm:

@ Compute |5, for every 1 < i < m.

@ Pick i with probability Z‘S||5|

© Pick a random assignment satisfying the corresponding clause
G.
This concludes to picking a satisfying assignment with probability
1
o'y

The above procedure is an FPRAS for #DNF.
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interreducible with #BIS

#P,-COL Definition
Instance: A graph G.

Output: The number of P, colourings of G, where P4 is the path
of length 3.

#DOWNSETS Definition

Instance: A partially ordered set (X, <).
Output: The number of downsets in (X, <).

#1P1NSAT Definition

Instance: A CNF Boolean formula ¢, with at most one unnegated
literal per clause, and at most one negated literal.
Output: The number of satisfying assignments to ¢.
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Relative Complexity of Approximate Counting Problems

Definition of H-colourings

Definition
An H-colouring of a graph G is simply a homomorphism
f:G— H:

(u,v) € Eg = (f(u),f(v)) € Ex

Regard the vertices of H as representing colours, then f : G — H
induces a g-colouring of G that respects the structure of H:

two colours may be adjacent in G only if the corresponding vertices
are adjacent in H.

@ K, -colourings, where K is the complete g-vertex graph, are
simply the usual g-colourings.

e Ki-colourings, where K} is Ky with one loop added,
correspond to independent sets.
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Relative Complexity of Approximate Counting Problems

Counting problems AP-interreducible with #BIS

Definition

The problems #BIS, #P,-COL, #DOWNSETS, #1P1NSAT are
all AP-interreducible.
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

@ A counting problem is identified with a sentence ¢ in FO
Logic, an instance with a model A, and solutions can be
counted by counting relations that make ¢ true in A.

@ Standard Definitions:

o Vocabulary: o = {ko, . kk,l}
° ﬁ;’s are relation symbol of arities ry, ..., rk_1
o Structure A = (A, Ry, ..., Rk—1) over o consists a universe A

e Each relation R; C A" is an interpretation of k,-.
@ We present counting problems as structures over suitable
vocabularies:

An instance of #IS is a graph which can be Oregarded as a
structure A = (A, ~), where A is the vertex set, and "~" is the
symmetric binary relation of adjacency.
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

@ The solutions to be counted are represented as sequences of
relations T = (Ty,..., T,—1) and first-order variables

zZ—= (Zo, ceey mel)-

Definition
A counting problem f (from structures over o to N) is in the class
#F O if it can be expressed as:

f(A) = {(T,2) : A = o(z, T)}

where ¢ is a FO formula with relation symbols from ¢ U T and
(free) variables from z.
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

If we encode an IS as a unary relation /, then #IS:

fis(A) = () : A EVx,y i x ~y = =l(x) vV =l(y)}

@ #IS is in the subclass #IM; C #FO (since the formula
contains only universal quantification).

@ In general, we have a (strict) hierarchy of subclasses:
#Xo = #o C #X1 C#My C #3x2 C #My = #FO = #P

@ All functions in #X1 admit an FPRAS!

@ All AP-interreducible problems we saw are in the (syntactically
restricted) subclass #RHIMy C #MM;:
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

Definition

A counting problem f is in the class #RHT1; if it can be expressed
in the form:

F(A) = {(T,2) : A=Yy :4(y,z, T)}

where ¢ is an unquantified CNF formula in which each clause has
at most one occurrence of an unnegated relation symbol from T,
and at most one occurrence of a negated relation symbol from T.

@ "RH" stands for "Restricted Horn”

@ The restriction on clauses of v applies only to terms involving
symbols from T.
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

@ An instance of #DOWNSETS can be expressed as a structure
A= (A<X).
Then, #DOWNSETS € #RHT14, since the number of
downsets may be expressed as:

fos(A) = [{(D) : A =Vx,y € A: D(x) A(y = x) = D(y)}|
@ An instance of #BIS can be expressed as a structure

A= (A=)

Then, #BIS € #RHT14, since:

feis(A) = [{(X) : A= Vx,y € A L(x)A(y 2 x)AX(x) = X(y)}
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Relative Complexity of Approximate Counting Problems

A Logical Characterisation #BIS and its relatives

e #I1PINSAT is complete for #RHI1 under Karp reductions.

@ The problems #BIS, #P,-COL, #DOWNSETS, #1P1NSAT
are all complete for #RHTy, with respect to AP-reducibility.
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The classes TotP and SpanL

Definitions of #PE and TotP

@ The class #PE contains the functions of #P, the decision version of
which are in P.

@ The definition of TotP involves a function associated with every PNTM
M:
toty(x) = #(paths of M on input x) — 1

Then, TotP = {toty|M is a PNTM}.

@ #PE contains all hard-to-count-easy-to-decide problems.
@ FP C TotP C #PE C #P. Inclusions are proper, unless P = NP.
@ FP™® = FP#PE = FP#P.
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The classes TotP and SpanL

Functions in TotP

#Perfect Matchings is in TotP.

stop stop

FIgU €. The computation tree of the nondeterministic algorithm for #Perfect Matchings for an input graph
with 3 perfect matchings.
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The classes TotP and SpanL

Functions in TotP

#DNF, #NonCliques are in TotP.
TotP is exactly the closure under Karp reductions of #PEg.
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The classes TotP and SpanL

The class SpanL

Definition

Let the function

spany(x) = the number of different valid outputs of M on input x

which is associated with a nondeterministic transducer M.
Then, SpanL={spany|M is some NL transducer M}.

Definition

#NFA:
Input: An encoding of an NFA M and a string x € {0,1}".
Output: The number of words < x accepted by M.

#NFA is complete for SpanL under logspace Karp reductions.
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The classes TotP and SpanL

SpanL is a hard counting class

#NFA is #P-complete with respect to Cook reducibility.

Proof. #DNF <% #NFA.
Let f be a boolean formula in disjunctive normal form. Let x, ..., x» and
Ci, ..., C; be the variables and the clauses of f.
We construct an NFA, the language of which is exactly the satisfying
assignments of f.
@ For each C; we construct an NFA M;.
@ M; consists of a chain of m + 1 states, so;, ..., Smi, So; iS the start state
and sp; the accepting state.
@ The edge (sj;, 5;+1;) is labelled 1 if x;11 € C;, 0 if X;11 € C;, and 0,1
otherwise.
1. M; accepts exactly the strings corresponding to truth assignments for C;.
Let M be the NFA with a start state s and an e-transition to the start state sp;
for each 1 < i < /. The final states are exactly the final states of each M;.
2. M accepts exactly the strings corresponding to satisfying assignments of f
and #NFA(M, m) = #DFA(f).
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The classes TotP and SpanL

The complexity of #NFA

@ There exists a n©(logn)

L NFA.

o There exists a n©(°8") almost uniform generator for
R#NFAM = {((M, 1m),X) X € {O, ].}m and x € L(M)}

randomised approximation scheme for
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The class SpanL

@ #L C SpanL C TotP.
° FPSpanL[l] _ FPTotP[l] _ FP#P[I]
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