Introduction to Lattices

Zacharakis Alexandros

School of Electrical and Computer Engineering, NTUA

May 4, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

1 Lattices in \mathbb{R}^m

2 The LLL Algorithm

3 Babai's Nearest Plane Algorithm

4 Complexity Results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Algebraic Algorithms

- Algebraic Algorithms
- Combinatorial Optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Algebraic Algorithms
- Combinatorial Optimization

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ④ Q @

Complexity

- Algebraic Algorithms
- Combinatorial Optimization

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Complexity
- Cryptanalysis

- Algebraic Algorithms
- Combinatorial Optimization
- Complexity
- Cryptanalysis
- Cryptography
 - Very efficient
 - Worst case security guarantees

- No known quantum attacks
- Exotic constructions

Contents

1 Lattices in \mathbb{R}^m

2 The LLL Algorithm

3 Babai's Nearest Plane Algorithm

4 Complexity Results

Definition

Definition

Given *n* linearly independent vectors $b_1, \ldots, b_n \in \mathbb{R}^m$ the lattice generated by them is the set

$$\mathcal{L}(b_1,\ldots,b_n) = \{\sum_{i=1}^n x_i b_i \mid x_i \in \mathbb{Z}\}$$

Denoting $B = [b_1 \ b_2 \ \dots \ b_n]$ equivalently we have

 $\mathcal{L}(B) = \{Bx \mid x \in \mathbb{Z}^n\}$

Definition

Definition

Given *n* linearly independent vectors $b_1, \ldots, b_n \in \mathbb{R}^m$ the lattice generated by them is the set

$$\mathcal{L}(b_1,\ldots,b_n) = \{\sum_{i=1}^n x_i b_i \mid x_i \in \mathbb{Z}\}$$

Denoting $B = [b_1 \ b_2 \ \dots \ b_n]$ equivalently we have

$$\mathcal{L}(B) = \{Bx \mid x \in \mathbb{Z}^n\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- B is the basis of the lattice.
- *m* is its dimension.
- n is its rank.
- A lattice is full rank if m = n.
- The span of the lattice is the linear span of its basis.

- A lattice has many (infinite) equivalent bases.
- We next define the fundamental parallilepiped with respect to a basis *B*.

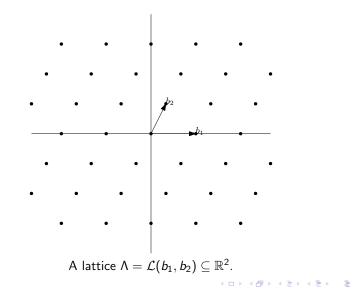
Definition

Fundamental Parallilepiped For a basis ${\cal B}$ the fundamental parallilepiped is the set

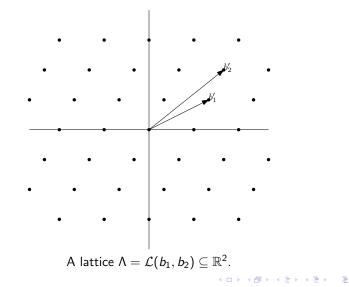
$$\mathcal{P}(B) = \{Bx \mid x \in [0,1)\}$$

Placing a copy of $\mathcal{P}(B)$ in every lattice point we partition span(B).

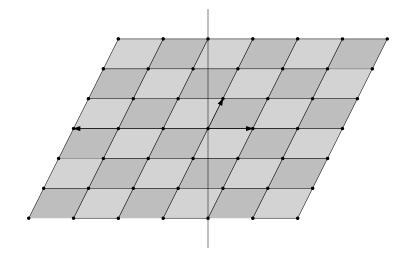
A Lattice in \mathbb{R}^2



A different basis for the same lattice

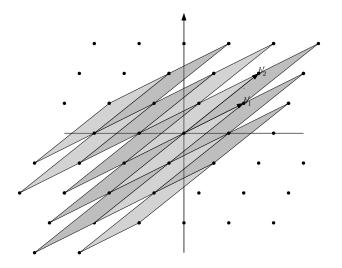


Fundamental Parallilepiped I



・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Fundamental Parallilepiped II



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Lemma

Let Λ be a lattice and $b_1, \ldots, b_n \in \Lambda$ be n linearly independent vectors. Then $\Lambda = \mathcal{L}(b_1, \ldots, b_n)$ iff $\mathcal{P}(b_1, \ldots, b_n) \cap \Lambda = \{0\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma

Let Λ be a lattice and $b_1, \ldots, b_n \in \Lambda$ be n linearly independent vectors. Then $\Lambda = \mathcal{L}(b_1, \ldots, b_n)$ iff $\mathcal{P}(b_1, \ldots, b_n) \cap \Lambda = \{0\}$.

Proof.

Lemma

Let Λ be a lattice and $b_1, \ldots, b_n \in \Lambda$ be n linearly independent vectors. Then $\Lambda = \mathcal{L}(b_1, \ldots, b_n)$ iff $\mathcal{P}(b_1, \ldots, b_n) \cap \Lambda = \{0\}$.

Proof.

$$(\Rightarrow)$$
 Suppose $x \in \mathcal{P}(b_1, \ldots, b_n) \cap \Lambda = \{0\}$. Then

x = Bz for $z \in \mathbb{Z}^n$

$$x = By$$
 for $y \in [0, 1)^n$

Since b_1, \ldots, b_n are linearly independent we get z = 0.

Lemma

Let Λ be a lattice and $b_1, \ldots, b_n \in \Lambda$ be n linearly independent vectors. Then $\Lambda = \mathcal{L}(b_1, \ldots, b_n)$ iff $\mathcal{P}(b_1, \ldots, b_n) \cap \Lambda = \{0\}$.

Proof.

(⇒) Suppose
$$x \in \mathcal{P}(b_1, ..., b_n) \cap \Lambda = \{0\}$$
. Then
 $x = Bz$ for $z \in \mathbb{Z}^n$
 $x = By$ for $y \in [0, 1)^n$
Since $b_1, ..., b_n$ are linearly independent we get $z = 0$
(⇐) Suppose $x \in \Lambda$. Then $x = By$ for $y \in \mathbb{R}^n$. Now
 $x' = B(y - |y|) \in \Lambda$. We get that $y = |y|$.

Lemma

Suppose $B, D \in \mathbb{R}^{m \times n}$ rank n matrices. Then $\mathcal{L}(B) = \mathcal{L}(D)$ iff D = BU for $U \in \mathbb{Z}^{n \times n}$ unimodular matrix.

Lemma

Suppose $B, D \in \mathbb{R}^{m \times n}$ rank n matrices. Then $\mathcal{L}(B) = \mathcal{L}(D)$ iff D = BU for $U \in \mathbb{Z}^{n \times n}$ unimodular matrix.

Proof.

Lemma

Suppose $B, D \in \mathbb{R}^{m \times n}$ rank n matrices. Then $\mathcal{L}(B) = \mathcal{L}(D)$ iff D = BU for $U \in \mathbb{Z}^{n \times n}$ unimodular matrix.

Proof.

(⇒) If $\mathcal{L}(B) = \mathcal{L}(D)$ then each column $b_i \in \mathcal{L}(D)$ so $b_i = Du_i$. In matrix form we have B = DU. Similarly D = BV. Then we have $B^T B = U^T V^T B^T B V U$ so $\det(B^T B) = \det(U^T V^T) \det(B^T B) \det(VU)$ and so $\det(VU)^2 = 1$ and we get $\det(V) \det(U) = \pm 1$.

Lemma

Suppose $B, D \in \mathbb{R}^{m \times n}$ rank n matrices. Then $\mathcal{L}(B) = \mathcal{L}(D)$ iff D = BU for $U \in \mathbb{Z}^{n \times n}$ unimodular matrix.

Proof.

(⇒) If $\mathcal{L}(B) = \mathcal{L}(D)$ then each column $b_i \in \mathcal{L}(D)$ so $b_i = Du_i$. In matrix form we have B = DU. Similarly D = BV. Then we have $B^T B = U^T V^T B^T BVU$ so $\det(B^T B) = \det(U^T V^T)\det(B^T B)\det(VU)$ and so $\det(VU)^2 = 1$ and we get $\det(V)\det(U) = \pm 1$. (⇐) Suppose D = BU. Then $D \subseteq \mathcal{L}(B)$. Also $B = DU^{-1}$ so $B \subseteq \mathcal{L}(D)$. We get $\mathcal{L}(B) = \mathcal{L}(D)$.

Another characterizations for equivalent basis is the following: B, D are equivalent basis iff we can constract D from B with the following operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Another characterizations for equivalent basis is the following: B, D are equivalent basis iff we can constract D from B with the following operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

1
$$b_i \leftarrow b_i + kb_j$$
 for $k \in \mathbb{Z}$

Another characterizations for equivalent basis is the following: B, D are equivalent basis iff we can constract D from B with the following operations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1
$$b_i \leftarrow b_i + kb_j$$
 for $k \in \mathbb{Z}$
2 $b_i \leftrightarrow b_j$

Another characterizations for equivalent basis is the following: B, D are equivalent basis iff we can constract D from B with the following operations

1
$$b_i \leftarrow b_i + kb_j$$
 for $k \in \mathbb{Z}$
2 $b_i \leftrightarrow b_j$
3 $b_i \leftarrow -b_i$

Determinant of a Lattice

Definition

The determinant of a lattice Λ is the *n*-dimentional volume of a fundamental parallepiped $\mathcal{P}(B)$, that is det $(\Lambda) = \sqrt{\det(B^T B)}$.

Determinant of a Lattice

Definition

The determinant of a lattice Λ is the *n*-dimentional volume of a fundamental parallepiped $\mathcal{P}(B)$, that is det $(\Lambda) = \sqrt{\det(B^T B)}$.

• Note that the determinant is a lattice invariant (does not depend on the lattice basis).

Determinant of a Lattice

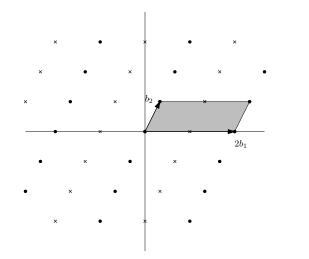
Definition

The determinant of a lattice Λ is the *n*-dimentional volume of a fundamental parallepiped $\mathcal{P}(B)$, that is det $(\Lambda) = \sqrt{\det(B^T B)}$.

• Note that the determinant is a lattice invariant (does not depend on the lattice basis).

• It expresses the *density* of a lattice.

A Sublattice



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GSO is an algorithm that takes as input n linear independent vectors and produces n orthogonal vectors.

GSO is an algorithm that takes as input n linear independent vectors and produces n orthogonal vectors.

It transforms b_i to

$$ilde{b}_i = b_i - \sum_{j=1}^{i-1} \mu_{i,j} \tilde{b}_j$$
 where $\mu_{i,j} = rac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}$

GSO is an algorithm that takes as input n linear independent vectors and produces n orthogonal vectors.

It transforms b_i to

$$ilde{b}_i = b_i - \sum_{j=1}^{i-1} \mu_{i,j} ilde{b}_j$$
 where $\mu_{i,j} = rac{\langle b_i, ilde{b}_j
angle}{\langle ilde{b}_j, ilde{b}_j
angle}$

• For all $i \neq j \langle \tilde{b}_i, \tilde{b}_j \rangle = 0$.

GSO is an algorithm that takes as input n linear independent vectors and produces n orthogonal vectors.

It transforms b_i to

$$ilde{b}_i = b_i - \sum_{j=1}^{i-1} \mu_{i,j} ilde{b}_j$$
 where $\mu_{i,j} = rac{\langle b_i, ilde{b}_j
angle}{\langle ilde{b}_j, ilde{b}_j
angle}$

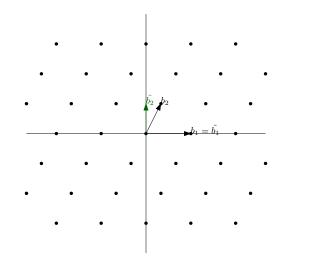
GSO is an algorithm that takes as input n linear independent vectors and produces n orthogonal vectors.

It transforms b_i to

$$ilde{b}_i = b_i - \sum_{j=1}^{i-1} \mu_{i,j} ilde{b}_j$$
 where $\mu_{i,j} = rac{\langle b_i, ilde{b}_j
angle}{\langle ilde{b}_j, ilde{b}_j
angle}$

The order of the input matters.

An example of GSO



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Gram Schmidt Orthogonormal Basis

Let $b_1,\ldots,b_n\in\mathbb{R}^m.$ If we normalize the GSO vectors we get an orthonormal basis

$$\frac{\tilde{b}_1}{\|\tilde{b}_1\|}, \dots, \frac{\tilde{b}_n}{\|\tilde{b}_n\|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gram Schmidt Orthogonormal Basis

Let $b_1,\ldots,b_n\in\mathbb{R}^m.$ If we normalize the GSO vectors we get an orthonormal basis

$$\frac{\tilde{b}_1}{\|\tilde{b}_1\|},\ldots,\frac{\tilde{b}_n}{\|\tilde{b}_n\|}$$

In this basis we have

$$B = \begin{bmatrix} \|\tilde{b_1}\| & \mu_{2,1}\|\tilde{b_1}\| & \dots & \mu_{n,1}\|\tilde{b_1}\| \\ 0 & \|\tilde{b_2}\| & \dots & \mu_{n,2}\|\tilde{b_2}\| \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \|\tilde{b_n}\| \\ 0 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

Gram Schmidt Orthogonormal Basis

Let $b_1,\ldots,b_n\in\mathbb{R}^m.$ If we normalize the GSO vectors we get an orthonormal basis

$$\frac{\tilde{b}_1}{\|\tilde{b}_1\|},\ldots,\frac{\tilde{b}_n}{\|\tilde{b}_n\|}$$

In this basis we have

$$B = \begin{bmatrix} \|\tilde{b_1}\| & \mu_{2,1}\|\tilde{b_1}\| & \dots & \mu_{n,1}\|\tilde{b_1}\| \\ 0 & \|\tilde{b_2}\| & \dots & \mu_{n,2}\|\tilde{b_2}\| \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \|\tilde{b_n}\| \\ 0 & \dots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

From this we can easily get that $\det(\mathcal{L}(B)) = \prod_{i=1}^n \|\tilde{b}_i\|$

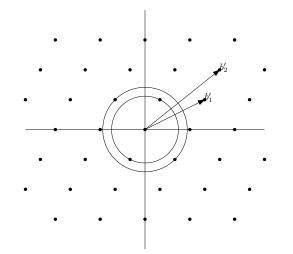
We define the *i*-th successive minima of Λ as the radius of the smallest ball that contains that contains *i* linearly independent lattice points. More formally

Definition

The *i*-th successive minima of Λ is

 $\lambda_i(\Lambda) = \inf\{r \mid \dim(\operatorname{span}(\Lambda \cap \overline{\mathbf{B}}(0, r))) > i\}$

Successive Minima Example



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \ge \min_i \|\tilde{b}_i\| > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Let $\mathcal{L}(B)$ be a lattic and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \geq \min_i \|\tilde{b_i}\| > 0$.

Proof.

Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \ge \min_i \|\tilde{b}_i\| > 0$.

- Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.
- Let $j \in [n]$ be the greatest such that $x_j \neq 0$.

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \ge \min_i \|\tilde{b}_i\| > 0$.

- Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.
- Let $j \in [n]$ be the greatest such that $x_j \neq 0$.
- $|\langle Bx, \tilde{b}_j \rangle| = |\langle \sum_{i=1}^j b_i x_i, \tilde{b}_j \rangle| = |x_j| \|\tilde{b}_j\|^2$

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \geq \min_i \|\tilde{b}_i\| > 0$.

- Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.
- Let $j \in [n]$ be the greatest such that $x_j \neq 0$.
- $|\langle Bx, \tilde{b}_j \rangle| = |\langle \sum_{i=1}^j b_i x_i, \tilde{b}_j \rangle| = |x_j| \|\tilde{b}_j\|^2$
- We also have $|\langle Bx, \tilde{b_j} \rangle| \le \|Bx\| \cdot \|\tilde{b_j}\|.$

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \ge \min_i \|\tilde{b_i}\| > 0$.

- Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.
- Let $j \in [n]$ be the greatest such that $x_j \neq 0$.
- $|\langle Bx, \tilde{b}_j \rangle| = |\langle \sum_{i=1}^j b_i x_i, \tilde{b}_j \rangle| = |x_j| \|\tilde{b}_j\|^2$
- We also have $|\langle Bx, \tilde{b}_j \rangle| \le ||Bx|| \cdot ||\tilde{b}_j||$.
- We get that $\|Bx\| \ge |x_j| \|\widetilde{b}_j\| \ge \|\widetilde{b}_j\| \ge \min_i \|\widetilde{b}_i\|$

Theorem

Let $\mathcal{L}(B)$ be a lattie and \tilde{B} its GSO. Then $\lambda_1(\mathcal{L}(B)) \ge \min_i \|\tilde{b_i}\| > 0$.

Proof.

- Suppose $x \in \mathbb{Z}^n$ and $Bx \in \mathcal{L}(B)$.
- Let $j \in [n]$ be the greatest such that $x_j \neq 0$.
- $|\langle Bx, \tilde{b}_j \rangle| = |\langle \sum_{i=1}^j b_i x_i, \tilde{b}_j \rangle| = |x_j| \|\tilde{b}_j\|^2$
- We also have $|\langle Bx, \tilde{b}_j \rangle| \le ||Bx|| \cdot ||\tilde{b}_j||$.
- We get that $\|Bx\| \ge |x_j| \|\tilde{b_j}\| \ge \|\tilde{b_j}\| \ge \min_i \|\tilde{b_i}\|$

Lattices are discrete structures.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

Proof.

• Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.
- $S = \bigcup_{x \in \Lambda} S_x$ so $\operatorname{vol}(S) = \sum_{x \in \Lambda} \operatorname{vol}(S_x) > \operatorname{vol}(\mathcal{P}(B))$.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.
- $S = \bigcup_{x \in \Lambda} S_x$ so $\operatorname{vol}(S) = \sum_{x \in \Lambda} \operatorname{vol}(S_x) > \operatorname{vol}(\mathcal{P}(B))$.
- Define $\overline{S_x} = S_x x$ (we move them to the origin).

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.
- $S = \bigcup_{x \in \Lambda} S_x$ so $\operatorname{vol}(S) = \sum_{x \in \Lambda} \operatorname{vol}(S_x) > \operatorname{vol}(\mathcal{P}(B))$.
- Define $\overline{S_x} = S_x x$ (we move them to the origin).
- There must be $y \neq x$ such that $\overline{S_x} \cap \overline{S_y} \neq \emptyset$. Suppose z is in both.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.
- $S = \bigcup_{x \in \Lambda} S_x$ so $\operatorname{vol}(S) = \sum_{x \in \Lambda} \operatorname{vol}(S_x) > \operatorname{vol}(\mathcal{P}(B))$.
- Define $\overline{S_x} = S_x x$ (we move them to the origin).
- There must be $y \neq x$ such that $\overline{S_x} \cap \overline{S_y} \neq \emptyset$. Suppose z is in both.
- We have $(z + x), (z + y) \in S$.

Theorem

For any full rank lattice Λ and any measurable $S \subseteq \mathbb{R}^n$ with $vol(S) > det(\Lambda)$, there exist $z_1, z_2 \in S$ such that $z_1 - z_2 \in \Lambda$.

- Consider for each point $x \in \Lambda$ the set $x + \mathcal{P}(B) = \{x + y \mid y \in \mathcal{P}(B)\}.$
- These sets partition \mathbb{R}^n .
- We define $S_x = S \cap (x + \mathcal{P}(B))$.
- $S = \bigcup_{x \in \Lambda} S_x$ so $\operatorname{vol}(S) = \sum_{x \in \Lambda} \operatorname{vol}(S_x) > \operatorname{vol}(\mathcal{P}(B))$.
- Define $\overline{S_x} = S_x x$ (we move them to the origin).
- There must be $y \neq x$ such that $\overline{S_x} \cap \overline{S_y} \neq \emptyset$. Suppose z is in both.
- We have $(z + x), (z + y) \in S$.
- $(z+x)-(z+y)=x-y\in\Lambda.$

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Define
$$S' = \frac{1}{2}S = \{x \mid 2x \in S\}.$$

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

- Define $S' = \frac{1}{2}S = \{x \mid 2x \in S\}.$
- We have $\operatorname{vol}(S') = 2^{-n} \operatorname{vol}(S) > \operatorname{det}(\Lambda)$.

Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

Proof.

- Define $S' = \frac{1}{2}S = \{x \mid 2x \in S\}.$
- We have $\operatorname{vol}(S') = 2^{-n} \operatorname{vol}(S) > \operatorname{det}(\Lambda)$.
- By the previous theorem, there exist $z_1, z_2 \in S'$ such that $z_1 z_2 \in \Lambda$.

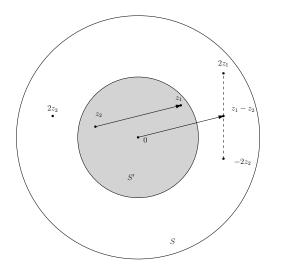
Theorem

For any full rank lattice Λ and any centrally symmetric, convex set $S \subseteq \mathbb{R}^n$ if $vol(S) > 2^n det(\Lambda)$, then S contains a non zero lattice point.

Proof.

- Define $S' = \frac{1}{2}S = \{x \mid 2x \in S\}.$
- We have $\operatorname{vol}(S') = 2^{-n} \operatorname{vol}(S) > \operatorname{det}(\Lambda)$.
- By the previous theorem, there exist $z_1, z_2 \in S'$ such that $z_1 z_2 \in \Lambda$.

• We have $2z_1, -2z_2 \in S$ and we get $z_1 - z_2 \in S$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bounding Successive Minima

By selecting appropriate sets (ball and ellipsoid respectively) we can deduce the following upper bounds for the succesive minima using the previous theorem.

$$\lambda_1(\Lambda) \leq \sqrt{n} \cdot \det(\Lambda)^{rac{1}{n}} \ (\prod_{i=1}^n \lambda_i(\Lambda))^{rac{1}{n}} \leq \sqrt{n} \cdot \det(\Lambda)^{rac{1}{n}}$$

Algebraic lattice points are easy:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Algebraic lattice points are easy:

• Membership: Given a matrix B and a point x decide wheather $x \in \mathcal{L}(B)$.

Algebraic lattice points are easy:

- Membership: Given a matrix B and a point x decide wheather $x \in \mathcal{L}(B)$.
- **Equivalence**: Given matrices B, D decide wheather $\mathcal{L}(B) = \mathcal{L}(D)$.

Algebraic lattice points are easy:

• Membership: Given a matrix B and a point x decide wheather $x \in \mathcal{L}(B)$.

Equivalence: Given matrices B, D decide wheather $\mathcal{L}(B) = \mathcal{L}(D)$. Things get harder when geometry comes to play.

Shortest Vector Problem

• SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.

• SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.

• **OptimizationSVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma \cdot d$.

- SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.
- **OptimizationSVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseSVP**_{γ}: Given (B, r) with $B \in \mathbb{Z}^{m \times n}$ and $r \in \mathbb{Q}$ decide whether $\lambda_1(\mathcal{L}(B)) \leq r$ or $\lambda_1(\mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

- SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.
- **OptimizationSVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseSVP**_{γ}: Given (B, r) with $B \in \mathbb{Z}^{m \times n}$ and $r \in \mathbb{Q}$ decide whether $\lambda_1(\mathcal{L}(B)) \leq r$ or $\lambda_1(\mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

- SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.
- **OptimizationSVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseSVP**_{γ}: Given (B, r) with $B \in \mathbb{Z}^{m \times n}$ and $r \in \mathbb{Q}$ decide whether $\lambda_1(\mathcal{L}(B)) \leq r$ or $\lambda_1(\mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

For $\gamma=1$ we get the exact versions of these problems. These are computationally equivalent.

- SearchSVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find $v \in \mathcal{L}(B)$ such that $v \neq 0$ and $||v|| \leq \gamma \cdot \lambda_1(\mathcal{L}(B))$.
- **OptimizationSVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ find d such that $d \leq \lambda_1(\mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseSVP**_{γ}: Given (B, r) with $B \in \mathbb{Z}^{m \times n}$ and $r \in \mathbb{Q}$ decide whether $\lambda_1(\mathcal{L}(B)) \leq r$ or $\lambda_1(\mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

For $\gamma=1$ we get the exact versions of these problems. These are computationally equivalent.

For the general case it is an open problem if this holds.

SearchCVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find $v \in \mathcal{L}(B)$ such that $||v - t|| \leq \gamma \cdot \operatorname{dist}(t, \mathcal{L}(B))$.

- SearchCVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find $v \in \mathcal{L}(B)$ such that $||v t|| \leq \gamma \cdot \operatorname{dist}(t, \mathcal{L}(B))$.
- **OptimizationCVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find d such that $d \leq \operatorname{dist}(t, \mathcal{L}(B)) \leq \gamma \cdot d$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- SearchCVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find $v \in \mathcal{L}(B)$ such that $||v t|| \leq \gamma \cdot \operatorname{dist}(t, \mathcal{L}(B))$.
- **OptimizationCVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find d such that $d \leq \operatorname{dist}(t, \mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseCVP**_{γ}: Given (B, t, r) with $B \in \mathbb{Z}^{m \times n}$, $t \in \mathbb{Z}^m$ and $r \in \mathbb{Q}$ decide whether dist $(t, \mathcal{L}(B)) \leq r$ or dist $(t, \mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

- SearchCVP_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find $v \in \mathcal{L}(B)$ such that $||v t|| \leq \gamma \cdot \operatorname{dist}(t, \mathcal{L}(B))$.
- **OptimizationCVP**_{γ}: Given $B \in \mathbb{Z}^{m \times n}$ and $t \in \mathbb{Z}^m$ find d such that $d \leq \operatorname{dist}(t, \mathcal{L}(B)) \leq \gamma \cdot d$.
- **PromiseCVP**_{γ}: Given (B, t, r) with $B \in \mathbb{Z}^{m \times n}$, $t \in \mathbb{Z}^m$ and $r \in \mathbb{Q}$ decide whether dist $(t, \mathcal{L}(B)) \leq r$ or dist $(t, \mathcal{L}(B)) > \gamma \cdot r$ given the promise that one of these is true

Contents

1 Lattices in \mathbb{R}^m

2 The LLL Algorithm

3 Babai's Nearest Plane Algorithm

4 Complexity Results

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves **SVP** for
$$\gamma = \frac{2}{\sqrt{3}}^n$$
.

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

Solves **SVP** for
$$\gamma = \frac{2}{\sqrt{3}}^n$$
.

Exponential approximation ratio in the dimention of the lattice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.

• Solves **SVP** for
$$\gamma = \frac{2}{\sqrt{3}}^n$$
.

Exponential approximation ratio in the dimention of the lattice.

• Improved by Schnorr for $\gamma = 2^{\mathcal{O}(n(\log \log n)^2 / \log n)}$.

- Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.
- Solves **SVP** for $\gamma = \frac{2}{\sqrt{3}}^n$.
- Exponential approximation ratio in the dimention of the lattice.

- Improved by Schnorr for $\gamma = 2^{\mathcal{O}(n(\log \log n)^2 / \log n)}$.
- It is also used for approximating **CVP**.

- Developed by A. Lenstra, H. Lenstra, L. Lovasz in 1982.
- Solves **SVP** for $\gamma = \frac{2}{\sqrt{3}}^n$.
- Exponential approximation ratio in the dimention of the lattice.
- Improved by Schnorr for $\gamma = 2^{\mathcal{O}(n(\log \log n)^2 / \log n)}$.
- It is also used for approximating **CVP**.
- Used for many problems, namely many algebraic problems, combinatorial optimization, cryptanalisis.

Definition

A basis $B = [b_1 \ b_2 \ \dots \ b_n]$ is a δ -LLL reduced basis if

1 forall $i \in [n]$, j < i it holds that $|\mu_{i,j}| \le \frac{1}{2}$

2 forall $i \in [n]$ it holds that $\delta \|\tilde{b}_i\|^2 \leq \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|^2$.

Definition

A basis $B = [b_1 \ b_2 \ \dots \ b_n]$ is a δ -LLL reduced basis if

- **1** forall $i \in [n]$, j < i it holds that $|\mu_{i,j}| \le \frac{1}{2}$
- 2 forall $i \in [n]$ it holds that $\delta \|\tilde{b}_i\|^2 \le \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|^2$.

We must have $\frac{1}{4} < \delta < 1$. Consider $\delta = \frac{3}{4}$.

Definition

A basis $B = [b_1 \ b_2 \ \dots \ b_n]$ is a δ -LLL reduced basis if

1 forall $i \in [n]$, j < i it holds that $|\mu_{i,j}| \le \frac{1}{2}$

2 forall $i \in [n]$ it holds that $\delta \|\tilde{b}_i\|^2 \leq \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|^2$.

We must have $\frac{1}{4} < \delta < 1$. Consider $\delta = \frac{3}{4}$. The second condition can be written as

$$\|\tilde{b}_{i+1}\|^2 \ge (\delta - \mu_{i+1,i}^2) \|\tilde{b}_i\|^2 \ge (\delta - \frac{1}{4}) \|\tilde{b}_i\|$$

That is \tilde{b}_{i+1} is not much shorter than \tilde{b}_i

Definition

A basis $B = [b_1 \ b_2 \ \dots \ b_n]$ is a δ -LLL reduced basis if

1 forall $i \in [n]$, j < i it holds that $|\mu_{i,j}| \le \frac{1}{2}$

2 forall $i \in [n]$ it holds that $\delta \|\tilde{b}_i\|^2 \leq \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|^2$.

We must have $\frac{1}{4} < \delta < 1$. Consider $\delta = \frac{3}{4}$. The second condition can be written as

$$\|\tilde{b}_{i+1}\|^2 \ge (\delta - \mu_{i+1,i}^2) \|\tilde{b}_i\|^2 \ge (\delta - \frac{1}{4}) \|\tilde{b}_i\|$$

That is \tilde{b}_{i+1} is not much shorter than \tilde{b}_i

• LLL produces a δ -LLL reduced basis.

Consider the orthonormal basis produced by GSO. A $\delta-\rm LLL$ reduced basis looks like this

$$\begin{bmatrix} \|\tilde{b}_1 &\leq \frac{1}{2}\|\tilde{b}_1\| & \cdots &\leq \frac{1}{2}\|\tilde{b}_1\| \\ 0 & \|\tilde{b}_2\| & \cdots &\leq \frac{1}{2}\|\tilde{b}_2\| \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots &\leq \frac{1}{2}\|\tilde{b}_{n-1}\| \\ 0 & 0 & \cdots & \|\tilde{b}_n\| \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Suppose b_1, \ldots, b_n is a δ -LLL reduced basis. Then

$$\|b_1\| \leq \Big(rac{2}{\sqrt{4\delta-1}}\Big)^{n-1}\lambda_1(\mathcal{L}(B))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Suppose b_1, \ldots, b_n is a δ -LLL reduced basis. Then

$$\|b_1\| \leq \left(rac{2}{\sqrt{4\delta-1}}
ight)^{n-1}\lambda_1(\mathcal{L}(B))$$

Proof.

We have

$$\|\widetilde{b_n}\|^2 \ge \left(\delta - \frac{1}{4}\right)\|\widetilde{b}_{n-1}\|^2 \ge \ldots \ge \left(\delta - \frac{1}{4}\right)^{n-1}\|\widetilde{b}_1\|^2$$

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem

Suppose b_1, \ldots, b_n is a δ -LLL reduced basis. Then

$$\|b_1\| \leq \left(rac{2}{\sqrt{4\delta-1}}
ight)^{n-1} \lambda_1(\mathcal{L}(B))$$

Proof.

We have

$$\|\tilde{b_n}\|^2 \geq \left(\delta - \frac{1}{4}\right)\|\tilde{b}_{n-1}\|^2 \geq \ldots \geq \left(\delta - \frac{1}{4}\right)^{n-1}\|\tilde{b}_1\|^2$$

After a few calculations we get that forall i

$$\| ilde{b_1}\| \leq \left(\delta - rac{1}{4}
ight)^{rac{n-1}{2}} \| ilde{b}_i\|$$

and since $\lambda_1(\mathcal{L}(B)) \geq \min_i \|\tilde{b}_i\|$ we get the result.

Theorem

Suppose b_1, \ldots, b_n is a δ -LLL reduced basis. Then

$$\|b_1\| \leq \left(rac{2}{\sqrt{4\delta-1}}
ight)^{n-1}\lambda_1(\mathcal{L}(B))$$

Proof.

We have

$$\|\widetilde{b_n}\|^2 \ge \left(\delta - \frac{1}{4}\right)\|\widetilde{b}_{n-1}\|^2 \ge \ldots \ge \left(\delta - \frac{1}{4}\right)^{n-1}\|\widetilde{b}_1\|^2$$

After a few calculations we get that forall i

$$\| ilde{b_1}\| \leq \left(\delta - rac{1}{4}
ight)^{rac{n-1}{2}} \| ilde{b}_i\|$$

(日) (同) (三) (三) (三) (○) (○)

and since $\lambda_1(\mathcal{L}(B)) \geq \min_i \|\tilde{b}_i\|$ we get the result.

For $\delta = \frac{3}{4}$ this gives a $2^{\frac{n-1}{2}}$ approximation ratio.

1 Start Compute $\tilde{b_1}, \ldots, \tilde{b_n}$ 2 Reduction for i = 2 to nfor j = i - 1 to 1 $c_{i,j} = \lfloor \frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle} \rceil$ $b_i \leftarrow b_i - c_{i,j} b_j$ 3 Swap if there exists i s.t $\delta \|\tilde{b}_i\|^2 > \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|^2$

 $b_i \leftrightarrow b_{i+1}$ **goto** start

Suppose that the LLL algorithm terminates.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Suppose that the LLL algorithm terminates.
- A simple calculations shows that GSO does not change during the reduction step.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Suppose that the LLL algorithm terminates.
- A simple calculations shows that GSO does not change during the reduction step.

• Condition 2 is enforced by the swap step.

- Suppose that the LLL algorithm terminates.
- A simple calculations shows that GSO does not change during the reduction step.
- Condition 2 is enforced by the swap step.
- Condition 1 is achieved by the reduction step. Namely

$$|\mu_{i,j}| = \left|\frac{\langle b_i - c_{i,j}b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\right| = \left|\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle} - \lfloor\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\right| \cdot \frac{\langle b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\right| \le \frac{1}{2}$$

- Suppose that the LLL algorithm terminates.
- A simple calculations shows that GSO does not change during the reduction step.
- Condition 2 is enforced by the swap step.
- Condition 1 is achieved by the reduction step. Namely

$$|\mu_{i,j}| = \Big|\frac{\langle b_i - c_{i,j}b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| = \Big|\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle} - \lfloor\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| \cdot \frac{\langle b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| \le \frac{1}{2}$$

 Each iteration runs in polynomial time with respect to the input (not so simple).

- Suppose that the LLL algorithm terminates.
- A simple calculations shows that GSO does not change during the reduction step.
- Condition 2 is enforced by the swap step.
- Condition 1 is achieved by the reduction step. Namely

$$|\mu_{i,j}| = \Big|\frac{\langle b_i - c_{i,j}b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| = \Big|\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle} - \lfloor\frac{\langle b_i, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| \cdot \frac{\langle b_j, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle}\Big| \le \frac{1}{2}$$

- Each iteration runs in polynomial time with respect to the input (not so simple).
- We need to show that the number of iterations is polynomial.

• We define $\mathcal{D}_{B,i} = \det \Lambda_i = \prod_{j=1}^i \|\tilde{b_1}\| \cdots \|\tilde{b_j}\|$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We define $\mathcal{D}_{B,i} = \det \Lambda_i = \prod_{j=1}^i \|\tilde{b_1}\| \cdots \|\tilde{b_i}\|$
- We define the potential function $\mathcal{D}_B = \prod_{i=1}^n \mathcal{D}_{B,i}$.

- We define $\mathcal{D}_{B,i} = \det \Lambda_i = \prod_{j=1}^i \|\tilde{b_1}\| \cdots \|\tilde{b_i}\|$
- We define the potential function $\mathcal{D}_B = \prod_{i=1}^n \mathcal{D}_{B,i}$.
- Initially the size of \mathcal{D}_B is polynomial. This is because

$$\mathcal{D}_B = \prod_{i=1}^n \|\tilde{b_1}\| \cdots \|\tilde{b_i}\| = \|b_1\|^n \|b_2\|^{n-1} \cdots \|b_n\| \le \max_i \|b_i\|^{rac{n(n+1)}{2}}$$

- We define $\mathcal{D}_{B,i} = \det \Lambda_i = \prod_{j=1}^i \|\tilde{b_1}\| \cdots \|\tilde{b_i}\|$
- We define the potential function $\mathcal{D}_B = \prod_{i=1}^n \mathcal{D}_{B,i}$.
- Initially the size of \mathcal{D}_B is polynomial. This is because

$$\mathcal{D}_B = \prod_{i=1}^n \| ilde{b_1} \| \cdots \| ilde{b_i} \| = \| b_1 \|^n \| b_2 \|^{n-1} \cdots \| b_n \| \le \max_i \| b_i \|^{rac{n(n+1)}{2}}$$

• We will show that \mathcal{D}_B decreases by a constant factor in each iteration.

Introduction to Lattices

Bounding iterations of LLL

• During the reduction step \mathcal{D}_B does not change.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bounding iterations of LLL

- During the reduction step \mathcal{D}_B does not change.
- After swaping $b_i \leftrightarrow b_{i+1}$, the only quantity that changes is $\mathcal{D}_{B,i}$

Bounding iterations of LLL

- During the reduction step \mathcal{D}_B does not change.
- After swaping $b_i \leftrightarrow b_{i+1}$, the only quantity that changes is $\mathcal{D}_{B,i}$

• We have
$$\frac{\mathcal{D}'_B}{\mathcal{D}_B} = \frac{\mathcal{D}'_{B,i}}{\mathcal{D}_{B,i}}$$
. In particular

$$\begin{split} \frac{\mathcal{D}'_{B,i}}{\mathcal{D}_{B,i}} &= \frac{\det(\mathcal{L}(b_1, \dots, b_{i-1}, b_{i+1}))}{\det(\mathcal{L}(b_1, \dots, b_i))} \\ &= \frac{(\prod_{j=1}^{i-1} \|\tilde{b}_j\|) \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|}{\prod_{j=1}^i \|\tilde{b}_j\|} \quad = \frac{\|\tilde{b}_j\| \cdot \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|}{\|\tilde{b}_i\|} \leq \sqrt{\delta} \end{split}$$

Bounding iterations of LLL

- During the reduction step \mathcal{D}_B does not change.
- After swaping $b_i \leftrightarrow b_{i+1}$, the only quantity that changes is $\mathcal{D}_{B,i}$

• We have
$$\frac{\mathcal{D}'_B}{\mathcal{D}_B} = \frac{\mathcal{D}'_{B,i}}{\mathcal{D}_{B,i}}$$
. In particular

$$\begin{split} \frac{\mathcal{D}'_{B,i}}{\mathcal{D}_{B,i}} &= \frac{\det(\mathcal{L}(b_1, \dots, b_{i-1}, b_{i+1}))}{\det(\mathcal{L}(b_1, \dots, b_i))} \\ &= \frac{(\prod_{j=1}^{i-1} \|\tilde{b}_j\|) \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|}{\prod_{j=1}^{i} \|\tilde{b}_j\|} \quad = \frac{\|\tilde{b}_j\| \cdot \|\mu_{i+1,i}\tilde{b}_i + \tilde{b}_{i+1}\|}{\|\tilde{b}_i\|} \leq \sqrt{\delta} \end{split}$$

- ロ ト - 4 回 ト - 4 □ - 4

So we can have at most $\log_{\frac{1}{\sqrt{\delta}}} \mathcal{D}_B$ iteration which is polynomial.

Contents

1 Lattices in \mathbb{R}^m

2 The LLL Algorithm

3 Babai's Nearest Plane Algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

4 Complexity Results

Introduction to Lattices Babai's Nearest Plane Algorithm

Babai's Nearest Plane Algorithm

Developed by L. Babai in 1986.

Babai's Nearest Plane Algorithm

- Developed by L. Babai in 1986.
- Solves **SearchCVP** for $\gamma = 2 \cdot \frac{2}{\sqrt{3}}^n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Babai's Nearest Plane Algorithm

- Developed by L. Babai in 1986.
- Solves SearchCVP for $\gamma = 2 \cdot \frac{2}{\sqrt{3}}^n$.
- Utilizes an LLL basis to solve SeacrhCVP.

Babai's Nearest Plane Algorithm

- Developed by L. Babai in 1986.
- Solves **SearchCVP** for $\gamma = 2 \cdot \frac{2}{\sqrt{3}}^n$.
- Utilizes an LLL basis to solve SeacrhCVP.
- We will present the algorithm and omit its analysis.

The Nearest Plane Algorithm

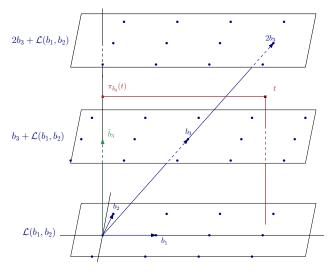
• Compute a δ -LLL reduced basis.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$b \leftarrow t$$

for $j = n$ to 1
 $c_j = \lfloor \frac{\langle b, \tilde{b}_j \rangle}{\langle \tilde{b}_j, \tilde{b}_j \rangle} \rfloor$
 $b \leftarrow b - c_j b_j$

Geometric Illustration of the Algorithm



・ロト・日本・日本・日本・日本・日本・日本

Contents

1 Lattices in \mathbb{R}^m

2 The LLL Algorithm

3 Babai's Nearest Plane Algorithm

4 Complexity Results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We show that **SubsetSum** reduces to **PromiseCVP**₁.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We show that **SubsetSum** reduces to **PromiseCVP**₁. We map an instance of Subset Sum as follows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

We show that **SubsetSum** reduces to $\mathsf{PromiseCVP}_1$. We map an instance of Subset Sum as follows

$$\langle \{a_1,\ldots,a_n\},S\rangle \mapsto \left\langle B = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ 2 & 0 & \cdots & 0 \\ 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 \end{bmatrix}, \ t = \begin{bmatrix} S \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \ r = \sqrt{n} \right\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

We show that **SubsetSum** reduces to **PromiseCVP**₁. We map an instance of Subset Sum as follows

$$\langle \{a_1,\ldots,a_n\},S\rangle \mapsto \left\langle B = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ 2 & 0 & \cdots & 0 \\ 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 \end{bmatrix}, \ t = \begin{bmatrix} S \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \ r = \sqrt{n} \right\rangle$$

If $\{\{a_1, \ldots, a_n\}, S\} \in$ SubsetSum then suppose that $\sum_{i \in A} a_i = S$. Now take y = Bz where z is vector with its j-th coordinate equal to 1 if $j \in A$ and 0 otherwise. Then $||Bz - t|| = ||[0 \pm 1 \ldots \pm 1]^T|| = \sqrt{n}$ and so $\langle B, t, r \rangle \in$ PromiseCVP₁.

We show that **SubsetSum** reduces to **PromiseCVP**₁. We map an instance of Subset Sum as follows

$$\langle \{a_1,\ldots,a_n\},S\rangle \mapsto \left\langle B = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ 2 & 0 & \cdots & 0 \\ 0 & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 2 \end{bmatrix}, \ t = \begin{bmatrix} S \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \ r = \sqrt{n} \right\rangle$$

- If $\langle \{a_1, \ldots, a_n\}, S \rangle \in$ SubsetSum then suppose that $\sum_{i \in A} a_i = S$. Now take y = Bz where z is vector with its j-th coordinate equal to 1 if $j \in A$ and 0 otherwise. Then $||Bz t|| = ||[0 \pm 1 \ldots \pm 1]^T|| = \sqrt{n}$ and so $\langle B, t, r \rangle \in$ PromiseCVP₁.
- If ⟨B, t, r⟩ ∈ PromiseCVP₁. Assume x ∈ L(B) such that ||x − t|| ≤ √n The last n coordinates are even, so subtracting 1 gives at least √n. It must be the case that the first coordinate is S.

We will show that we can solve the search problem given an oracle for the decisional problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We will show that we can solve the search problem given an oracle for the decisional problem.

• We first find the length of the closest vector *r*.

We will show that we can solve the search problem given an oracle for the decisional problem.

- We first find the length of the closest vector *r*.
- We use binary search in [0, R] where $R = \sum_{i=1}^{n} ||b_i||$.

We will show that we can solve the search problem given an oracle for the decisional problem.

- We first find the length of the closest vector *r*.
- We use binary search in [0, R] where $R = \sum_{i=1}^{n} \|b_i\|$.
- We have R^2 possibilities since we deal with integers.

We will show that we can solve the search problem given an oracle for the decisional problem.

- We first find the length of the closest vector *r*.
- We use binary search in [0, R] where $R = \sum_{i=1}^{n} \|b_i\|$.
- We have R^2 possibilities since we deal with integers.
- We need $2 \log R$ queries to the oracle (polynomial).

We will show that we can solve the search problem given an oracle for the decisional problem.

- We first find the length of the closest vector *r*.
- We use binary search in [0, R] where $R = \sum_{i=1}^{n} \|b_i\|$.
- We have R^2 possibilities since we deal with integers.
- We need $2 \log R$ queries to the oracle (polynomial).
- Note that if we find the closest vector to t + v for $v \in \mathcal{L}$ we are done.

We iteratively make sparser the lattice while maintaining three properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We iteratively make sparser the lattice while maintaining three properties $\mathcal{L}(B')$ is a sublattice of $\mathcal{L}(B)$.

We iteratively make sparser the lattice while maintaining three properties
⊥ L(B') is a sublattice of L(B).
2 t' = t + v for v ∈ L(B).

We iteratively make sparser the lattice while maintaining three properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1
$$\mathcal{L}(B')$$
 is a sublattice of $\mathcal{L}(B)$.

2
$$t' = t + v$$
 for $v \in \mathcal{L}(B)$.

We iteratively make sparser the lattice while maintaining three properties

1
$$\mathcal{L}(B')$$
 is a sublattice of $\mathcal{L}(B)$.

2
$$t' = t + v$$
 for $v \in \mathcal{L}(B)$.

The iterative step (for b_1) is the following

• Set $B' = [2b_1 \ b_2 \ \dots \ b_n]$. We take a sublattice with half the points.

(日) (日) (日) (日) (日) (日) (日) (日)

We iteratively make sparser the lattice while maintaining three properties

1
$$\mathcal{L}(B')$$
 is a sublattice of $\mathcal{L}(B)$.

2
$$t' = t + v$$
 for $v \in \mathcal{L}(B)$.

The iterative step (for b_1) is the following

- Set $B' = [2b_1 \ b_2 \ \dots \ b_n]$. We take a sublattice with half the points.
- Using the oracle, if $dist(\mathcal{L}(B)', t) \leq r$ we set t' = t else $t' = t b_1$.

We iteratively make sparser the lattice while maintaining three properties

1
$$\mathcal{L}(B')$$
 is a sublattice of $\mathcal{L}(B)$.

2
$$t' = t + v$$
 for $v \in \mathcal{L}(B)$.

The iterative step (for b_1) is the following

• Set $B' = [2b_1 \ b_2 \ \dots \ b_n]$. We take a sublattice with half the points.

• Using the oracle, if $dist(\mathcal{L}(B)', t) \leq r$ we set t' = t else $t' = t - b_1$. We have that $\mathcal{L}(B) = \mathcal{L}(B') \cup \mathcal{L}(B' + b_1)$. So the distance to from t to

the new subblatice or the shifted sublattice is r.

We perform the iterative step k = n + log r times for each coordinates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.

• We know that $dist(B^*, t^*) = r$.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.

- We know that $dist(B^*, t^*) = r$.
- Note that $\lambda_1(\mathcal{L}(B^*)) \geq 2^k = 2^n \cdot r$.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.

- We know that $dist(B^*, t^*) = r$.
- Note that $\lambda_1(\mathcal{L}(B^*)) \geq 2^k = 2^n \cdot r$.
- The second closest vector to t^* is at distance at least $2^n r r \ge 2^{n-1} \cdot r$.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.
- We know that $dist(B^*, t^*) = r$.
- Note that $\lambda_1(\mathcal{L}(B^*)) \geq 2^k = 2^n \cdot r$.
- The second closest vector to t^* is at distance at least $2^n r r \ge 2^{n-1} \cdot r$.
- So if we run the nearest plane algorithm we get the closest vector.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.
- We know that $dist(B^*, t^*) = r$.
- Note that $\lambda_1(\mathcal{L}(B^*)) \geq 2^k = 2^n \cdot r$.
- The second closest vector to t^* is at distance at least $2^n r r \ge 2^{n-1} \cdot r$.
- So if we run the nearest plane algorithm we get the closest vector.

From there we can construct *t* for the initial lattice.

- We perform the iterative step k = n + log r times for each coordinates.
- Finally the basis of the lattice is of the form $B^* = [2^k b_1 \dots 2^k b_n]$.
- We know that $dist(B^*, t^*) = r$.
- Note that $\lambda_1(\mathcal{L}(B^*)) \geq 2^k = 2^n \cdot r$.
- The second closest vector to t^* is at distance at least $2^n r r \ge 2^{n-1} \cdot r$.
- So if we run the nearest plane algorithm we get the closest vector.
- From there we can construct *t* for the initial lattice.

We dont know how to generalize this for the gap versions of the problems.

SVP looks like CVP with origin as the target vector.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- SVP looks like CVP with origin as the target vector.
- This cannot be directly utilized to solve SVP with a CVP oracle.

- SVP looks like CVP with origin as the target vector.
- This cannot be directly utilized to solve SVP with a CVP oracle.
- The origin is always a lattice point and so the oracle will always return it.

- SVP looks like CVP with origin as the target vector.
- This cannot be directly utilized to solve SVP with a CVP oracle.
- The origin is always a lattice point and so the oracle will always return it.

• We need to delete it somehow.

- SVP looks like CVP with origin as the target vector.
- This cannot be directly utilized to solve SVP with a CVP oracle.
- The origin is always a lattice point and so the oracle will always return it.

- We need to delete it somehow.
- If we delete a lattice point we no longer have a lattice.

- SVP looks like CVP with origin as the target vector.
- This cannot be directly utilized to solve SVP with a CVP oracle.
- The origin is always a lattice point and so the oracle will always return it.

- We need to delete it somehow.
- If we delete a lattice point we no longer have a lattice.
- So in the reduction, we delete a set of lattice points.

• Our input is a basis *B* and an *r*.

- Our input is a basis *B* and an *r*.
- We try to distinguish between the cases $\lambda_1 \leq r$ and $\lambda_1 > \gamma \cdot r$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Our input is a basis *B* and an *r*.
- We try to distinguish between the cases $\lambda_1 \leq r$ and $\lambda_1 > \gamma \cdot r$.

• We create *n* new subblattices with bases $B_i = [b_1 \dots b_{i-1} 2b_i b_{i+1} \dots b_n]$

- Our input is a basis *B* and an *r*.
- We try to distinguish between the cases $\lambda_1 \leq r$ and $\lambda_1 > \gamma \cdot r$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- We create *n* new subblattices with bases $B_i = [b_1 \dots b_{i-1} 2b_i b_{i+1} \dots b_n]$
- We run the oracle for inputs $\langle B_i, b_i, r \rangle$.

- Our input is a basis *B* and an *r*.
- We try to distinguish between the cases $\lambda_1 \leq r$ and $\lambda_1 > \gamma \cdot r$.
- We create *n* new subblattices with bases $B_i = [b_1 \dots b_{i-1} 2b_i b_{i+1} \dots b_n]$
- We run the oracle for inputs $\langle B_i, b_i, r \rangle$.
- If any returns YES we return YES otherwise we return NO.

Correctness of the Reduction

We examine the two cases

Correctness of the Reduction

We examine the two cases

if (B, r) ∉ PromiseSVP_γ then λ₁(L(B)) > γ ⋅ r. So any lattice vector v has length ||v|| > γ ⋅ r. Now suppose that for some i the oracle returned YES. Then there exists v ∈ L(B_i) s.t. ||v − b_i|| ≤ r. But this is a lattice point in L(B) which is a contradiction.

Correctness of the Reduction

We examine the two cases

- if (B, r) ∉ PromiseSVP_γ then λ₁(L(B)) > γ ⋅ r. So any lattice vector v has length ||v|| > γ ⋅ r. Now suppose that for some i the oracle returned YES. Then there exists v ∈ L(B_i) s.t. ||v − b_i|| ≤ r. But this is a lattice point in L(B) which is a contradiction.
- if $(B, r) \in \mathbf{PromiseSVP}_{\gamma}$ then $\lambda_1(\mathcal{L}(B)) \leq r$. Let v be the smallest vector. Then $v = a_1b_1 + \ldots + a_nb_n$ for some a_i odd. Then $b_i + v \in \mathcal{L}(B_i)$ and its distance from b_i is less than r so the oracle must return YES.

The end!

Thank you! Questions?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ