
PCP & Hardness of Approximation

Vasilis Margonis

Advanced Topics in Algorithms & Complexity

∝ ∧ µ ∀

May 11, 2017

Vasilis Margonis (ALMA) PCP May 11, 2017 1 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 2 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 3 / 40

Introduction

Suppose a mathematician circulates a proof of an important result,
say Riemann Hypothesis, fitting 10 thousand pages.

To verify it would take us several years, going through all of those
pages.

Weird question: Can we do better than that? (e.g. ignore most part
of the proof)

Even weirder answer: Yes, according to the PCP theorem.

Vasilis Margonis (ALMA) PCP May 11, 2017 4 / 40

Introduction

Suppose a mathematician circulates a proof of an important result,
say Riemann Hypothesis, fitting 10 thousand pages.

To verify it would take us several years, going through all of those
pages.

Weird question: Can we do better than that? (e.g. ignore most part
of the proof)

Even weirder answer: Yes, according to the PCP theorem.

Vasilis Margonis (ALMA) PCP May 11, 2017 4 / 40

Introduction

Suppose a mathematician circulates a proof of an important result,
say Riemann Hypothesis, fitting 10 thousand pages.

To verify it would take us several years, going through all of those
pages.

Weird question: Can we do better than that? (e.g. ignore most part
of the proof)

Even weirder answer: Yes, according to the PCP theorem.

Vasilis Margonis (ALMA) PCP May 11, 2017 4 / 40

Introduction

Suppose a mathematician circulates a proof of an important result,
say Riemann Hypothesis, fitting 10 thousand pages.

To verify it would take us several years, going through all of those
pages.

Weird question: Can we do better than that? (e.g. ignore most part
of the proof)

Even weirder answer: Yes, according to the PCP theorem.

Vasilis Margonis (ALMA) PCP May 11, 2017 4 / 40

The idea behind PCP

So, the mathematician can rewrite his proof in a certain format. the PCP
format, so we can verify it by probabilistically selecting a constant number
of bits to examine it. Furthermore, this verification has the following
properties:

1 A correct proof will always convince us.

2 A false proof will convince us with only negligible probability (2−100 if
we examine 300 bits). In fact, a stronger assertion is true: if the
Riemann hypothesis is false, then we are guaranteed to reject any
string of letters placed before us with high probability.

Note: This proof rewriting is completely mechanical (a computer could do
it) and does not greatly increase its size.

Vasilis Margonis (ALMA) PCP May 11, 2017 5 / 40

The idea behind PCP

So, the mathematician can rewrite his proof in a certain format. the PCP
format, so we can verify it by probabilistically selecting a constant number
of bits to examine it. Furthermore, this verification has the following
properties:

1 A correct proof will always convince us.

2 A false proof will convince us with only negligible probability (2−100 if
we examine 300 bits). In fact, a stronger assertion is true: if the
Riemann hypothesis is false, then we are guaranteed to reject any
string of letters placed before us with high probability.

Note: This proof rewriting is completely mechanical (a computer could do
it) and does not greatly increase its size.

Vasilis Margonis (ALMA) PCP May 11, 2017 5 / 40

The idea behind PCP

So, the mathematician can rewrite his proof in a certain format. the PCP
format, so we can verify it by probabilistically selecting a constant number
of bits to examine it. Furthermore, this verification has the following
properties:

1 A correct proof will always convince us.

2 A false proof will convince us with only negligible probability (2−100 if
we examine 300 bits). In fact, a stronger assertion is true: if the
Riemann hypothesis is false, then we are guaranteed to reject any
string of letters placed before us with high probability.

Note: This proof rewriting is completely mechanical (a computer could do
it) and does not greatly increase its size.

Vasilis Margonis (ALMA) PCP May 11, 2017 5 / 40

The idea behind PCP

So, the mathematician can rewrite his proof in a certain format. the PCP
format, so we can verify it by probabilistically selecting a constant number
of bits to examine it. Furthermore, this verification has the following
properties:

1 A correct proof will always convince us.

2 A false proof will convince us with only negligible probability (2−100 if
we examine 300 bits). In fact, a stronger assertion is true: if the
Riemann hypothesis is false, then we are guaranteed to reject any
string of letters placed before us with high probability.

Note: This proof rewriting is completely mechanical (a computer could do
it) and does not greatly increase its size.

Vasilis Margonis (ALMA) PCP May 11, 2017 5 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation
PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation
PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation
PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof

PCP transformation
PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation

PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

The idea behind PCP

In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.

What the PCP theorem tells us is that there is a mechanical way to
rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation
PCP format

Vasilis Margonis (ALMA) PCP May 11, 2017 6 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 7 / 40

Standard definitions of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (Classic definition)

NP =
⋃
c∈N

NTIME (nc)

Definition (YES-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
polynomial-time TM V (called verifier) such that, given an input x ,
verifies certificates (proofs), denoted π:

x ∈ L⇒ ∃π ∈ {0, 1}p(|x |) : V π(x) = 1

x /∈ L⇒ ∀π ∈ {0, 1}p(|x |) : V π(x) = 0

V π(x) has access to an input string x and a proof string π. If x ∈ L and
π ∈ {0, 1}p(|x |) satisfy V π(x) = 1, then we call π a correct proof for x.

Vasilis Margonis (ALMA) PCP May 11, 2017 8 / 40

Standard definitions of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (Classic definition)

NP =
⋃
c∈N

NTIME (nc)

Definition (YES-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
polynomial-time TM V (called verifier) such that, given an input x ,
verifies certificates (proofs), denoted π:

x ∈ L⇒ ∃π ∈ {0, 1}p(|x |) : V π(x) = 1

x /∈ L⇒ ∀π ∈ {0, 1}p(|x |) : V π(x) = 0

V π(x) has access to an input string x and a proof string π. If x ∈ L and
π ∈ {0, 1}p(|x |) satisfy V π(x) = 1, then we call π a correct proof for x.

Vasilis Margonis (ALMA) PCP May 11, 2017 8 / 40

Standard definitions of NP

Note: From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (Classic definition)

NP =
⋃
c∈N

NTIME (nc)

Definition (YES-certificate definition)

A language L is in NP if there exists a polynomial p : N→ N and a
polynomial-time TM V (called verifier) such that, given an input x ,
verifies certificates (proofs), denoted π:

x ∈ L⇒ ∃π ∈ {0, 1}p(|x |) : V π(x) = 1

x /∈ L⇒ ∀π ∈ {0, 1}p(|x |) : V π(x) = 0

V π(x) has access to an input string x and a proof string π. If x ∈ L and
π ∈ {0, 1}p(|x |) satisfy V π(x) = 1, then we call π a correct proof for x.

Vasilis Margonis (ALMA) PCP May 11, 2017 8 / 40

Towards a new characterization of NP

Definition (PCP verifier)

Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to
a string π ∈ {0, 1}∗ (the proof), V uses at most r(n) random coins
and makes at most q(n) non-adaptive queries to locations of π. Then
it outputs “1” (accept) or “0” (reject). We denote by V π(x) the
random variable representing V’s output on input x and with random
access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call π a correct proof for x)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗, Pr [V π(x) = 1] ≤ 1/2.

We say that L ∈ PCP[r(n), q(n)], if there are some constants c , d > 0
such that L has a [c · r(n), d · q(n)]-PCP verifier.

Vasilis Margonis (ALMA) PCP May 11, 2017 9 / 40

Towards a new characterization of NP

Definition (PCP verifier)

Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to
a string π ∈ {0, 1}∗ (the proof), V uses at most r(n) random coins
and makes at most q(n) non-adaptive queries to locations of π. Then
it outputs “1” (accept) or “0” (reject). We denote by V π(x) the
random variable representing V’s output on input x and with random
access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call π a correct proof for x)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗, Pr [V π(x) = 1] ≤ 1/2.

We say that L ∈ PCP[r(n), q(n)], if there are some constants c , d > 0
such that L has a [c · r(n), d · q(n)]-PCP verifier.

Vasilis Margonis (ALMA) PCP May 11, 2017 9 / 40

Towards a new characterization of NP

Definition (PCP verifier)

Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to
a string π ∈ {0, 1}∗ (the proof), V uses at most r(n) random coins
and makes at most q(n) non-adaptive queries to locations of π. Then
it outputs “1” (accept) or “0” (reject). We denote by V π(x) the
random variable representing V’s output on input x and with random
access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call π a correct proof for x)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗, Pr [V π(x) = 1] ≤ 1/2.

We say that L ∈ PCP[r(n), q(n)], if there are some constants c , d > 0
such that L has a [c · r(n), d · q(n)]-PCP verifier.

Vasilis Margonis (ALMA) PCP May 11, 2017 9 / 40

Towards a new characterization of NP

Definition (PCP verifier)

Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to
a string π ∈ {0, 1}∗ (the proof), V uses at most r(n) random coins
and makes at most q(n) non-adaptive queries to locations of π. Then
it outputs “1” (accept) or “0” (reject). We denote by V π(x) the
random variable representing V’s output on input x and with random
access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call π a correct proof for x)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗, Pr [V π(x) = 1] ≤ 1/2.

We say that L ∈ PCP[r(n), q(n)], if there are some constants c , d > 0
such that L has a [c · r(n), d · q(n)]-PCP verifier.

Vasilis Margonis (ALMA) PCP May 11, 2017 9 / 40

Towards a new characterization of NP

Definition (PCP verifier)

Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V satisfying:

Efficiency: On input a string x ∈ {0, 1}n and given random access to
a string π ∈ {0, 1}∗ (the proof), V uses at most r(n) random coins
and makes at most q(n) non-adaptive queries to locations of π. Then
it outputs “1” (accept) or “0” (reject). We denote by V π(x) the
random variable representing V’s output on input x and with random
access to π.

Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ such that Pr [V π(x) = 1] = 1.
(We call π a correct proof for x)

Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗, Pr [V π(x) = 1] ≤ 1/2.

We say that L ∈ PCP[r(n), q(n)], if there are some constants c , d > 0
such that L has a [c · r(n), d · q(n)]-PCP verifier.

Vasilis Margonis (ALMA) PCP May 11, 2017 9 / 40

Towards a new characterization of NP

Notes:

1 Proofs checkable by an [r , q]-PCP verifier are of length at most q2r .
The verifier looks at only q places of the proof for any particular
choice of its random coins, and there are only 2r such choices.

2 The constant 1/2 in the soundness condition is arbitrary, in the sense
that we can execute the verifier multiple times to make the constant
as small as we want.

For instance, if we run k times a PCP verifier with soundness of 1/2
that uses r coins and makes q queries, it can be seen as a PCP verifier
with soundness of (1/2)k that uses (k · r) coins and makes (k · q)
queries.

Vasilis Margonis (ALMA) PCP May 11, 2017 10 / 40

Towards a new characterization of NP

Notes:

1 Proofs checkable by an [r , q]-PCP verifier are of length at most q2r .
The verifier looks at only q places of the proof for any particular
choice of its random coins, and there are only 2r such choices.

2 The constant 1/2 in the soundness condition is arbitrary, in the sense
that we can execute the verifier multiple times to make the constant
as small as we want.

For instance, if we run k times a PCP verifier with soundness of 1/2
that uses r coins and makes q queries, it can be seen as a PCP verifier
with soundness of (1/2)k that uses (k · r) coins and makes (k · q)
queries.

Vasilis Margonis (ALMA) PCP May 11, 2017 10 / 40

Towards a new characterization of NP

Notes:

1 Proofs checkable by an [r , q]-PCP verifier are of length at most q2r .
The verifier looks at only q places of the proof for any particular
choice of its random coins, and there are only 2r such choices.

2 The constant 1/2 in the soundness condition is arbitrary, in the sense
that we can execute the verifier multiple times to make the constant
as small as we want.

For instance, if we run k times a PCP verifier with soundness of 1/2
that uses r coins and makes q queries, it can be seen as a PCP verifier
with soundness of (1/2)k that uses (k · r) coins and makes (k · q)
queries.

Vasilis Margonis (ALMA) PCP May 11, 2017 10 / 40

The PCP theorem

Theorem (2.1 - PCP theorem - Arora, Safra, Lund, Motwani, Sudan,
Szegedy)

NP = PCP[O(logn),O(1)]

Vasilis Margonis (ALMA) PCP May 11, 2017 11 / 40

Proof of the PCP theorem - easy direction

Lemma

PCP[O(logn),O(1)] ⊆ NP

Proof.

An [r(n), q(n)]-PCP verifier can check proofs of length at most 2r(n)q(n).
Hence, a nondeterministic machine could “guess” the proof in 2r(n)q(n)
time, and verify it deterministically by running the verifier for all 2r(n)

possible outcomes of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

It follows that PCP[r(n), q(n)] ⊆ NTIME (2r(n)q(n)).

As a special case, PCP[O(logn),O(1)] ⊆ NTIME (2O(logn) · O(1)) = NP.

Vasilis Margonis (ALMA) PCP May 11, 2017 12 / 40

Proof of the PCP theorem - easy direction

Lemma

PCP[O(logn),O(1)] ⊆ NP

Proof.

An [r(n), q(n)]-PCP verifier can check proofs of length at most 2r(n)q(n).
Hence, a nondeterministic machine could “guess” the proof in 2r(n)q(n)
time, and verify it deterministically by running the verifier for all 2r(n)

possible outcomes of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

It follows that PCP[r(n), q(n)] ⊆ NTIME (2r(n)q(n)).

As a special case, PCP[O(logn),O(1)] ⊆ NTIME (2O(logn) · O(1)) = NP.

Vasilis Margonis (ALMA) PCP May 11, 2017 12 / 40

Proof of the PCP theorem - easy direction

Lemma

PCP[O(logn),O(1)] ⊆ NP

Proof.

An [r(n), q(n)]-PCP verifier can check proofs of length at most 2r(n)q(n).
Hence, a nondeterministic machine could “guess” the proof in 2r(n)q(n)
time, and verify it deterministically by running the verifier for all 2r(n)

possible outcomes of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

It follows that PCP[r(n), q(n)] ⊆ NTIME (2r(n)q(n)).

As a special case, PCP[O(logn),O(1)] ⊆ NTIME (2O(logn) · O(1)) = NP.

Vasilis Margonis (ALMA) PCP May 11, 2017 12 / 40

Proof of the PCP theorem - easy direction

Lemma

PCP[O(logn),O(1)] ⊆ NP

Proof.

An [r(n), q(n)]-PCP verifier can check proofs of length at most 2r(n)q(n).
Hence, a nondeterministic machine could “guess” the proof in 2r(n)q(n)
time, and verify it deterministically by running the verifier for all 2r(n)

possible outcomes of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

It follows that PCP[r(n), q(n)] ⊆ NTIME (2r(n)q(n)).

As a special case, PCP[O(logn),O(1)] ⊆ NTIME (2O(logn) · O(1)) = NP.

Vasilis Margonis (ALMA) PCP May 11, 2017 12 / 40

Proof of the PCP theorem - hard direction

Lemma

NP ⊆ PCP[O(logn),O(1)]

We will definitely not prove this right now.

Vasilis Margonis (ALMA) PCP May 11, 2017 13 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 14 / 40

Motivation: Approximate solutions to NP-hard problems

Since the discovery of NP-completeness in 1972, researchers tried to
efficiently compute near-optimal solutions to NP-hard optimization
problems.

They failed to design such approximation algorithms for most
problems. Then they tried to show that computing approximate
solutions is also hard, but apart from a few isolated successes this
effort also stalled.

Researchers slowly began to realize that the Cook-Levin-Karp style
reductions do not suffice to prove any limits on approximation
algorithms.

The PCP Theorem, not only gave a new definition of NP, but also
provided a new starting point for reductions (the gap-producing
reductions).

Vasilis Margonis (ALMA) PCP May 11, 2017 15 / 40

Motivation: Approximate solutions to NP-hard problems

Since the discovery of NP-completeness in 1972, researchers tried to
efficiently compute near-optimal solutions to NP-hard optimization
problems.

They failed to design such approximation algorithms for most
problems. Then they tried to show that computing approximate
solutions is also hard, but apart from a few isolated successes this
effort also stalled.

Researchers slowly began to realize that the Cook-Levin-Karp style
reductions do not suffice to prove any limits on approximation
algorithms.

The PCP Theorem, not only gave a new definition of NP, but also
provided a new starting point for reductions (the gap-producing
reductions).

Vasilis Margonis (ALMA) PCP May 11, 2017 15 / 40

Motivation: Approximate solutions to NP-hard problems

Since the discovery of NP-completeness in 1972, researchers tried to
efficiently compute near-optimal solutions to NP-hard optimization
problems.

They failed to design such approximation algorithms for most
problems. Then they tried to show that computing approximate
solutions is also hard, but apart from a few isolated successes this
effort also stalled.

Researchers slowly began to realize that the Cook-Levin-Karp style
reductions do not suffice to prove any limits on approximation
algorithms.

The PCP Theorem, not only gave a new definition of NP, but also
provided a new starting point for reductions (the gap-producing
reductions).

Vasilis Margonis (ALMA) PCP May 11, 2017 15 / 40

Motivation: Approximate solutions to NP-hard problems

Since the discovery of NP-completeness in 1972, researchers tried to
efficiently compute near-optimal solutions to NP-hard optimization
problems.

They failed to design such approximation algorithms for most
problems. Then they tried to show that computing approximate
solutions is also hard, but apart from a few isolated successes this
effort also stalled.

Researchers slowly began to realize that the Cook-Levin-Karp style
reductions do not suffice to prove any limits on approximation
algorithms.

The PCP Theorem, not only gave a new definition of NP, but also
provided a new starting point for reductions (the gap-producing
reductions).

Vasilis Margonis (ALMA) PCP May 11, 2017 15 / 40

The hardness of approximation view

The PCP theorem states that computing near-optimal solutions for some
NP-hard problems is no easier than computing exact solutions.

For concreteness, we focus on MAX -3SAT . We begin by defining what an
ρ-approximation algorithm for MAX -3SAT is.

Definition (Approximation of MAX -3SAT)

For every 3CNF formula φ, the value of φ (denoted val(φ)), is the
maximum fraction of clauses that can satisfied by any assignment to φ’s
variables. In particular, φ is satisfiable iff val(φ) = 1.

Let ρ < 1. An algorithm A is an ρ-approximation algorithm for
MAX -3SAT if for every 3CNF formula φ with m clauses, A(φ) outputs an
assignment satisfying at least (ρ · val(φ) ·m) clauses of φ.

Vasilis Margonis (ALMA) PCP May 11, 2017 16 / 40

The hardness of approximation view

The PCP theorem states that computing near-optimal solutions for some
NP-hard problems is no easier than computing exact solutions.

For concreteness, we focus on MAX -3SAT . We begin by defining what an
ρ-approximation algorithm for MAX -3SAT is.

Definition (Approximation of MAX -3SAT)

For every 3CNF formula φ, the value of φ (denoted val(φ)), is the
maximum fraction of clauses that can satisfied by any assignment to φ’s
variables. In particular, φ is satisfiable iff val(φ) = 1.

Let ρ < 1. An algorithm A is an ρ-approximation algorithm for
MAX -3SAT if for every 3CNF formula φ with m clauses, A(φ) outputs an
assignment satisfying at least (ρ · val(φ) ·m) clauses of φ.

Vasilis Margonis (ALMA) PCP May 11, 2017 16 / 40

The hardness of approximation view

The PCP theorem states that computing near-optimal solutions for some
NP-hard problems is no easier than computing exact solutions.

For concreteness, we focus on MAX -3SAT . We begin by defining what an
ρ-approximation algorithm for MAX -3SAT is.

Definition (Approximation of MAX -3SAT)

For every 3CNF formula φ, the value of φ (denoted val(φ)), is the
maximum fraction of clauses that can satisfied by any assignment to φ’s
variables. In particular, φ is satisfiable iff val(φ) = 1.

Let ρ < 1. An algorithm A is an ρ-approximation algorithm for
MAX -3SAT if for every 3CNF formula φ with m clauses, A(φ) outputs an
assignment satisfying at least (ρ · val(φ) ·m) clauses of φ.

Vasilis Margonis (ALMA) PCP May 11, 2017 16 / 40

The hardness of approximation view

Until 1992, we did not know whether or not MAX -3SAT has a
polynomial-time ρ-approximation algorithm for every ρ < 1.

It turns out that the PCP Theorem means that the answer is NO
(unless P = NP). The reason is that it can be equivalently stated as
follows:

Theorem (3.1 - PCP theorem: Hardness of approximation view)

There exists ρ < 1 such that ∀L ∈ NP there is a polynomial-time function
f mapping strings to 3CNF formulas such that:

x ∈ L⇒ val(f (x)) = 1 (1)

x /∈ L⇒ val(f (x)) < ρ (2)

Vasilis Margonis (ALMA) PCP May 11, 2017 17 / 40

The hardness of approximation view

Until 1992, we did not know whether or not MAX -3SAT has a
polynomial-time ρ-approximation algorithm for every ρ < 1.

It turns out that the PCP Theorem means that the answer is NO
(unless P = NP). The reason is that it can be equivalently stated as
follows:

Theorem (3.1 - PCP theorem: Hardness of approximation view)

There exists ρ < 1 such that ∀L ∈ NP there is a polynomial-time function
f mapping strings to 3CNF formulas such that:

x ∈ L⇒ val(f (x)) = 1 (1)

x /∈ L⇒ val(f (x)) < ρ (2)

Vasilis Margonis (ALMA) PCP May 11, 2017 17 / 40

The hardness of approximation view

Until 1992, we did not know whether or not MAX -3SAT has a
polynomial-time ρ-approximation algorithm for every ρ < 1.

It turns out that the PCP Theorem means that the answer is NO
(unless P = NP). The reason is that it can be equivalently stated as
follows:

Theorem (3.1 - PCP theorem: Hardness of approximation view)

There exists ρ < 1 such that ∀L ∈ NP there is a polynomial-time function
f mapping strings to 3CNF formulas such that:

x ∈ L⇒ val(f (x)) = 1 (1)

x /∈ L⇒ val(f (x)) < ρ (2)

Vasilis Margonis (ALMA) PCP May 11, 2017 17 / 40

The hardness of approximation view

Hence, theorem 3.1 immediately implies the following corollary.

Corollary

There exists some constant ρ < 1 such that there is no polynomial-time
ρ-approximation algorithm for MAX-3SAT, unless P = NP.

Indeed, we can convert a ρ-approximation algorithm A for
MAX -3SAT into an algorithm deciding L.

We apply the reduction f on x and then run the approximation
algorithm to the resultant 3CNF formula f (x).

(1) and (2) together imply that x ∈ L iff A(f (x)) returns an
assignment that satisfies at least a ρ fraction of f (x)’s clauses.

Vasilis Margonis (ALMA) PCP May 11, 2017 18 / 40

The hardness of approximation view

Hence, theorem 3.1 immediately implies the following corollary.

Corollary

There exists some constant ρ < 1 such that there is no polynomial-time
ρ-approximation algorithm for MAX-3SAT, unless P = NP.

Indeed, we can convert a ρ-approximation algorithm A for
MAX -3SAT into an algorithm deciding L.

We apply the reduction f on x and then run the approximation
algorithm to the resultant 3CNF formula f (x).

(1) and (2) together imply that x ∈ L iff A(f (x)) returns an
assignment that satisfies at least a ρ fraction of f (x)’s clauses.

Vasilis Margonis (ALMA) PCP May 11, 2017 18 / 40

The hardness of approximation view

Hence, theorem 3.1 immediately implies the following corollary.

Corollary

There exists some constant ρ < 1 such that there is no polynomial-time
ρ-approximation algorithm for MAX-3SAT, unless P = NP.

Indeed, we can convert a ρ-approximation algorithm A for
MAX -3SAT into an algorithm deciding L.

We apply the reduction f on x and then run the approximation
algorithm to the resultant 3CNF formula f (x).

(1) and (2) together imply that x ∈ L iff A(f (x)) returns an
assignment that satisfies at least a ρ fraction of f (x)’s clauses.

Vasilis Margonis (ALMA) PCP May 11, 2017 18 / 40

The hardness of approximation view

Hence, theorem 3.1 immediately implies the following corollary.

Corollary

There exists some constant ρ < 1 such that there is no polynomial-time
ρ-approximation algorithm for MAX-3SAT, unless P = NP.

Indeed, we can convert a ρ-approximation algorithm A for
MAX -3SAT into an algorithm deciding L.

We apply the reduction f on x and then run the approximation
algorithm to the resultant 3CNF formula f (x).

(1) and (2) together imply that x ∈ L iff A(f (x)) returns an
assignment that satisfies at least a ρ fraction of f (x)’s clauses.

Vasilis Margonis (ALMA) PCP May 11, 2017 18 / 40

Equivalence of the two views

To show the equivalence of the “proof view” and the “hardness of
approximation view” of the PCP theorem, we first introduce the
notion of Constrained Satisfaction Problems (CSP).

We will then prove the equivalence of the two views by showing that
they are both equivalent to the NP-hardness of a certain gap version
of CSP.

Vasilis Margonis (ALMA) PCP May 11, 2017 19 / 40

Equivalence of the two views

To show the equivalence of the “proof view” and the “hardness of
approximation view” of the PCP theorem, we first introduce the
notion of Constrained Satisfaction Problems (CSP).

We will then prove the equivalence of the two views by showing that
they are both equivalent to the NP-hardness of a certain gap version
of CSP.

Vasilis Margonis (ALMA) PCP May 11, 2017 19 / 40

Constrained Satisfaction Problems

Definition (CSP)

Let q ∈ N, a qCSP instance φ = {φ1, . . . , φm} is a collection of functions
(called constraints). where φi : {0, 1}n → {0, 1}, such that each function
φi depends on at most q of its input locations.

We say that u ∈ {0, 1}n satisfies constraint φi , if φi (u) = 1. The fraction

of the constraints satisfied by u is
(∑m

i=1 φi (u)
m

)
, and we let val(φ) denote

the maximum is this value over all u ∈ {0, 1}n. We say that φ is satisfiable
if val(φ) = 1 and we call q the arity of φ.

Notes:

We define the size of a qCSP instance φ to be m, the number of
constraints.

Because variables not used by any constraints are redundant, we
always assume n ≤ qm.

Vasilis Margonis (ALMA) PCP May 11, 2017 20 / 40

Constrained Satisfaction Problems

Definition (CSP)

Let q ∈ N, a qCSP instance φ = {φ1, . . . , φm} is a collection of functions
(called constraints). where φi : {0, 1}n → {0, 1}, such that each function
φi depends on at most q of its input locations.

We say that u ∈ {0, 1}n satisfies constraint φi , if φi (u) = 1. The fraction

of the constraints satisfied by u is
(∑m

i=1 φi (u)
m

)
, and we let val(φ) denote

the maximum is this value over all u ∈ {0, 1}n. We say that φ is satisfiable
if val(φ) = 1 and we call q the arity of φ.

Notes:

We define the size of a qCSP instance φ to be m, the number of
constraints.

Because variables not used by any constraints are redundant, we
always assume n ≤ qm.

Vasilis Margonis (ALMA) PCP May 11, 2017 20 / 40

The gap version of CSP

Definition (ρ-GAPqCSP)

Let q ∈ N, ρ < 1. We define ρ-GAPqCSP to be the problem of
determining for a given qCSP instance φ whether:

val(φ) = 1 (φ is a YES-instance of ρ-GAPqCSP)

val(φ) < ρ (φ is a NO-instance of ρ-GAPqCSP)

We say that ρ-GAPqCSP is NP-hard if ∀L ∈ NP there is a
polynomial-time function f mapping strings to qCSP instances satisfying:

Completeness: x ∈ L⇒ val(f (x)) = 1

Soundness: x /∈ L⇒ val(f (x)) < ρ

Theorem (3.2 - NP-hardness of ρ-GAPqCSP)

There exists q ∈ N, ρ < 1 such that ρ-GAPqCSP is NP-hard.

Vasilis Margonis (ALMA) PCP May 11, 2017 21 / 40

The gap version of CSP

Definition (ρ-GAPqCSP)

Let q ∈ N, ρ < 1. We define ρ-GAPqCSP to be the problem of
determining for a given qCSP instance φ whether:

val(φ) = 1 (φ is a YES-instance of ρ-GAPqCSP)

val(φ) < ρ (φ is a NO-instance of ρ-GAPqCSP)

We say that ρ-GAPqCSP is NP-hard if ∀L ∈ NP there is a
polynomial-time function f mapping strings to qCSP instances satisfying:

Completeness: x ∈ L⇒ val(f (x)) = 1

Soundness: x /∈ L⇒ val(f (x)) < ρ

Theorem (3.2 - NP-hardness of ρ-GAPqCSP)

There exists q ∈ N, ρ < 1 such that ρ-GAPqCSP is NP-hard.

Vasilis Margonis (ALMA) PCP May 11, 2017 21 / 40

The gap version of CSP

Definition (ρ-GAPqCSP)

Let q ∈ N, ρ < 1. We define ρ-GAPqCSP to be the problem of
determining for a given qCSP instance φ whether:

val(φ) = 1 (φ is a YES-instance of ρ-GAPqCSP)

val(φ) < ρ (φ is a NO-instance of ρ-GAPqCSP)

We say that ρ-GAPqCSP is NP-hard if ∀L ∈ NP there is a
polynomial-time function f mapping strings to qCSP instances satisfying:

Completeness: x ∈ L⇒ val(f (x)) = 1

Soundness: x /∈ L⇒ val(f (x)) < ρ

Theorem (3.2 - NP-hardness of ρ-GAPqCSP)

There exists q ∈ N, ρ < 1 such that ρ-GAPqCSP is NP-hard.

Vasilis Margonis (ALMA) PCP May 11, 2017 21 / 40

Theorem 2.1 ≡ Theorem 3.2 (1/2)

We will show that theorems 2.1, 3.1 and 3.2 are all equivalent to one
another. We begin by proving that Theorem 2.1 ≡ Theorem 3.2.

(⇒).

Assume that NP ⊆ PCP[O(logn),O(1)]. We will show that
1/2-GAPqCSP is NP-hard for some q, through a reduction from some
L ∈ NP. Under our assumption, L has a [clogn, q]-PCP verifier. Let x be
the input of the verifier and r ∈ {0, 1}clogn an outcome of a random coin
toss. Define Vx ,r (π) = 1 if V π(x) = 1 for the coin toss r . Note that
Vx ,r (π) depends on at most q bits of the proof π. Hence,
φ = {Vx ,r}r∈{0,1}clogn is a polynomial-sized instance of qCSP. Furthermore,
since V runs in polynomial-time, the transformation from x to φ can also
be carried out in polynomial-time. By the completeness and soundness of
the PCP-verifier, if x ∈ L then val(φ) = 1, while if x /∈ L then
val(φ) < 1/2.

Vasilis Margonis (ALMA) PCP May 11, 2017 22 / 40

Theorem 2.1 ≡ Theorem 3.2 (2/2)

(⇐).

Suppose that ρ-GAPqCSP is NP-hard for some constants q and ρ < 1.
Then this easily translate into a PCP-verifier with logarithmic randomness,
q queries and ρ soundness for any language L:

Given an input x , the verifier will run the reduction f (x) to obtain a qCSP
instance φ = {φ1, . . . , φm}. It will expect the proof π to be an assignment
to the variables of φ, which it will verify by choosing a random i ∈ [m] and
checking that φi is satisfied (by making queries). Clearly, if x ∈ L then the
verifier will accept with probability 1, while if x /∈ L it will accept with
probability at most ρ.

The soundness can be boosted to 1/2 at the expense of a constant factor
in the randomness and number of queries.

Vasilis Margonis (ALMA) PCP May 11, 2017 23 / 40

Review of the equivalence

Theorem 2.1 Theorem 3.2

PCP verifier (V) CSP instance (φ)

Proof (π) Assignment to variables (u)

Length of proof Number of variables (n)

Number of queries (q) Arity of constraints (q)

Number of random bits (r) Logarithm of number of constraints (logm)

Soundness parameter Maximum of val(φ) for a NO instrance

NP ⊆ PCP[O(logn),O(1)] ρ-GAPqCSP is NP-hard

Vasilis Margonis (ALMA) PCP May 11, 2017 24 / 40

Theorem 3.1 ≡ Theorem 3.2 (1/3)

Now we will prove that theorem 3.1 is equivalent to theorem 3.2.

(⇒).

Since 3CNF formulas are a special case 3CSP instances, theorem 3.1
implies theorem 3.2.

(⇐).

Let ε > 0 and q ∈ N be such that by theorem 3.2, (1− ε)-GAPqCSP is
NP-hard. Let φ be a qCSP instance over n variables with m constraints.
Each constraint φi of φ can be expressed as an AND of at most 2q

clauses, where each clause is the OR of at most q variables (or their
negations). Let φ′ denote the collection of at most m2q clauses
corresponding to all the constraints of φ.

If φ is a YES-instance of (1− ε)-GAPqCSP, then there exists an
assignment satisfying all the clauses of φ′.

Vasilis Margonis (ALMA) PCP May 11, 2017 25 / 40

Theorem 3.1 ≡ Theorem 3.2 (1/3)

Now we will prove that theorem 3.1 is equivalent to theorem 3.2.

(⇒).

Since 3CNF formulas are a special case 3CSP instances, theorem 3.1
implies theorem 3.2.

(⇐).

Let ε > 0 and q ∈ N be such that by theorem 3.2, (1− ε)-GAPqCSP is
NP-hard. Let φ be a qCSP instance over n variables with m constraints.
Each constraint φi of φ can be expressed as an AND of at most 2q

clauses, where each clause is the OR of at most q variables (or their
negations). Let φ′ denote the collection of at most m2q clauses
corresponding to all the constraints of φ.

If φ is a YES-instance of (1− ε)-GAPqCSP, then there exists an
assignment satisfying all the clauses of φ′.

Vasilis Margonis (ALMA) PCP May 11, 2017 25 / 40

Theorem 3.1 ≡ Theorem 3.2 (1/3)

Now we will prove that theorem 3.1 is equivalent to theorem 3.2.

(⇒).

Since 3CNF formulas are a special case 3CSP instances, theorem 3.1
implies theorem 3.2.

(⇐).

Let ε > 0 and q ∈ N be such that by theorem 3.2, (1− ε)-GAPqCSP is
NP-hard. Let φ be a qCSP instance over n variables with m constraints.
Each constraint φi of φ can be expressed as an AND of at most 2q

clauses, where each clause is the OR of at most q variables (or their
negations). Let φ′ denote the collection of at most m2q clauses
corresponding to all the constraints of φ.

If φ is a YES-instance of (1− ε)-GAPqCSP, then there exists an
assignment satisfying all the clauses of φ′.

Vasilis Margonis (ALMA) PCP May 11, 2017 25 / 40

Theorem 3.1 ≡ Theorem 3.2 (2/3)

(⇐), Cont’d.

If φ is a NO-instance of (1− ε)-GAPqCSP, then every assignment
violates at least an ε fraction of the constraints of φ, and hence at
least an ε

2q fraction of the constraints of φ′.

We can use the Cook-Levin technique to transform any clause C on q
variables u1, . . . , uq to a set C1, . . . ,Cq of clauses over the variables
u1, . . . , uq and additional auxiliary variables y1, . . . , yq such that:

1 Each clause Ci is the OR of at most three variables or their negations.

2 if u1, . . . , uq satisfy C then there is an assignment to y1, . . . , yq such
that u1, . . . , uq, y1, . . . , yq simultaneously satisfy C1, . . . ,Cq.

3 if u1, . . . , uq does not satisfy C then for every assignment to
y1, . . . , yq, there is some clause Ci that is not satisfied by
u1, . . . , uq, y1, . . . , yq.

Vasilis Margonis (ALMA) PCP May 11, 2017 26 / 40

Theorem 3.1 ≡ Theorem 3.2 (3/3)

(⇐), Cont’d.

Let φ′′ denote the collection of at most qm2q clauses over the n + qm2q

variables obtained in this way from φ′. Note that φ′′ is a 3SAT formula.
Our reduction will map φ to φ′′.

Completeness holds since if φ were satisfiable, then so would be φ′,
and hence φ′′.

Soundness holds since if every assignment violates at least an ε
fraction of the constraints of φ, then every assignment violates at
least an ε

2q fraction of the constraints of φ′, and so every assignment
violates at least an ε

q2q fraction of the constraints of φ′′.

Vasilis Margonis (ALMA) PCP May 11, 2017 27 / 40

Consequences

MAX -3SAT is a central problem in the study of hardness of
approximation. Once we have proved its inapproximability, other
inapproximability results easily follow. For example:

There is some ρ < 1 such that if there no polynomial-time
ρ-approximation algorithm for VERTEX -COVER, unless P = NP.

For every ρ < 1 if there no polynomial-time ρ-approximation
algorithm for INDSET , unless P = NP.

Note that the inapproximability result for INDSET is much stronger than
the result for VERTEX -COVER.

Vasilis Margonis (ALMA) PCP May 11, 2017 28 / 40

Consequences

MAX -3SAT is a central problem in the study of hardness of
approximation. Once we have proved its inapproximability, other
inapproximability results easily follow. For example:

There is some ρ < 1 such that if there no polynomial-time
ρ-approximation algorithm for VERTEX -COVER, unless P = NP.

For every ρ < 1 if there no polynomial-time ρ-approximation
algorithm for INDSET , unless P = NP.

Note that the inapproximability result for INDSET is much stronger than
the result for VERTEX -COVER.

Vasilis Margonis (ALMA) PCP May 11, 2017 28 / 40

Consequences

MAX -3SAT is a central problem in the study of hardness of
approximation. Once we have proved its inapproximability, other
inapproximability results easily follow. For example:

There is some ρ < 1 such that if there no polynomial-time
ρ-approximation algorithm for VERTEX -COVER, unless P = NP.

For every ρ < 1 if there no polynomial-time ρ-approximation
algorithm for INDSET , unless P = NP.

Note that the inapproximability result for INDSET is much stronger than
the result for VERTEX -COVER.

Vasilis Margonis (ALMA) PCP May 11, 2017 28 / 40

Consequences

MAX -3SAT is a central problem in the study of hardness of
approximation. Once we have proved its inapproximability, other
inapproximability results easily follow. For example:

There is some ρ < 1 such that if there no polynomial-time
ρ-approximation algorithm for VERTEX -COVER, unless P = NP.

For every ρ < 1 if there no polynomial-time ρ-approximation
algorithm for INDSET , unless P = NP.

Note that the inapproximability result for INDSET is much stronger than
the result for VERTEX -COVER.

Vasilis Margonis (ALMA) PCP May 11, 2017 28 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 29 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Asking questions

We proved that there exists some ρ < 1 such that there is no
polynomial-time ρ-approximation algorithm for MAX -3SAT , unless
P = NP.

But can we calculate that ρ ?

There is a simple polynomial-time greedy algorithm that achieves an
approximation ratio of 1/2.

Karloff and Zwick used semidefinite programming to design a
polynomial-time (7/8− ε)-approximation algorithm for every ε > 0.

Can we do better than 7/8?

Håstad proved that the answer is NO (unless P = NP, of course).

Vasilis Margonis (ALMA) PCP May 11, 2017 30 / 40

Only 3 bits ?

The optimal inapproximability result for MAX -3SAT is based on the
following PCP construction:

Theorem (Håstad, 1997)

NP = PCP1−ε, 1
2
+ε[O(logn), 3], ∀ε > 0

Moreover, the tests used by V are linear: Given a proof π ∈ {0, 1}m, V
chooses a triple (i , j , k) ∈ [m]3 and a bit b ∈ {0, 1} according to some
distribution and accepts iff πi ⊕ πj ⊕ πk = b.

Vasilis Margonis (ALMA) PCP May 11, 2017 31 / 40

3-bit PCP and MAX -E3LIN

Håstad’s 3-bit PCP is intimately connected to the hardness of
approximating a problem called MAX -E3LIN.

MAX -E3LIN is a subcase of 3CSP in which the constraints specify
the parity of triples of variables.

We are interested in determining the largest subset of equations that
are simultaneously satisfiable.

Corollary

H̊astad’s Theorem implies that (1/2 + ν)-approximation to MAX-E3LIN is
NP-hard for every ν > 0.

This is a threshold result since MAX -E3LIN has a simple
1/2-approximation algorithm.

Vasilis Margonis (ALMA) PCP May 11, 2017 32 / 40

3-bit PCP and MAX -E3LIN

Håstad’s 3-bit PCP is intimately connected to the hardness of
approximating a problem called MAX -E3LIN.

MAX -E3LIN is a subcase of 3CSP in which the constraints specify
the parity of triples of variables.

We are interested in determining the largest subset of equations that
are simultaneously satisfiable.

Corollary

H̊astad’s Theorem implies that (1/2 + ν)-approximation to MAX-E3LIN is
NP-hard for every ν > 0.

This is a threshold result since MAX -E3LIN has a simple
1/2-approximation algorithm.

Vasilis Margonis (ALMA) PCP May 11, 2017 32 / 40

3-bit PCP and MAX -E3LIN

Håstad’s 3-bit PCP is intimately connected to the hardness of
approximating a problem called MAX -E3LIN.

MAX -E3LIN is a subcase of 3CSP in which the constraints specify
the parity of triples of variables.

We are interested in determining the largest subset of equations that
are simultaneously satisfiable.

Corollary

H̊astad’s Theorem implies that (1/2 + ν)-approximation to MAX-E3LIN is
NP-hard for every ν > 0.

This is a threshold result since MAX -E3LIN has a simple
1/2-approximation algorithm.

Vasilis Margonis (ALMA) PCP May 11, 2017 32 / 40

3-bit PCP and MAX -E3LIN

Håstad’s 3-bit PCP is intimately connected to the hardness of
approximating a problem called MAX -E3LIN.

MAX -E3LIN is a subcase of 3CSP in which the constraints specify
the parity of triples of variables.

We are interested in determining the largest subset of equations that
are simultaneously satisfiable.

Corollary

H̊astad’s Theorem implies that (1/2 + ν)-approximation to MAX-E3LIN is
NP-hard for every ν > 0.

This is a threshold result since MAX -E3LIN has a simple
1/2-approximation algorithm.

Vasilis Margonis (ALMA) PCP May 11, 2017 32 / 40

3-bit PCP and MAX -E3LIN

Håstad’s 3-bit PCP is intimately connected to the hardness of
approximating a problem called MAX -E3LIN.

MAX -E3LIN is a subcase of 3CSP in which the constraints specify
the parity of triples of variables.

We are interested in determining the largest subset of equations that
are simultaneously satisfiable.

Corollary

H̊astad’s Theorem implies that (1/2 + ν)-approximation to MAX-E3LIN is
NP-hard for every ν > 0.

This is a threshold result since MAX -E3LIN has a simple
1/2-approximation algorithm.

Vasilis Margonis (ALMA) PCP May 11, 2017 32 / 40

Hardness of approximating MAX -3SAT (1/2)

Corollary

For every ε > 0, (7/8 + ε)-approximation to MAX-3SAT is NP-hard.

Proof.

We reduce MAX -E3LIN to MAX -3SAT .

Take an instance of MAX -E3LIN, where we are interested in
determining whether (1− ν) fraction of the equations can be satisfied
or at most (1/2 + ν) are.

Represent each linear constraint by four 3CNF clauses in the obvious
way. For example, the linear constraint x ⊕ y ⊕ z = 0 is equivalent to
the clauses (x ∨ y ∨ z), (x ∨ y ∨ z), (x ∨ y ∨ z), (x ∨ y ∨ z).

If x , y , z satisfy the linear constraint, then they satisfy all four clauses.
Otherwise, they satisfy three clauses.

Vasilis Margonis (ALMA) PCP May 11, 2017 33 / 40

Hardness of approximating MAX -3SAT (2/2)

Proof (Cont’d).

Conclusion:

In one case at least (1− ν
4) fraction of clauses are simultaneously

satisfiable.

In the other case at most 1− (12 − ν) ×ν
4 = 7

8 + ν
4 fraction of clauses

are simultaneously satisfiable.

Since distinguishing between the two cases is NP-hard, we conclude
that it is NP-hard to compute a ρ-approximation to MAX -3SAT
where ρ = 7/8 + ν/4.

As ν decreases, ρ can be arbitrarily close to 7/8, and hence
(7/8 + ε)-approximation is NP-hard for every ε > 0.

Vasilis Margonis (ALMA) PCP May 11, 2017 34 / 40

Overview

1 Introduction

2 The PCP Theorem, a new characterization of NP

3 The Hardness of Approximation View

4 An optimal inapproximability result for MAX -3SAT

5 Inapproximability results for other known problems

Vasilis Margonis (ALMA) PCP May 11, 2017 35 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Vertex Cover & Independent Set

Vertex Cover:

A simple algorithm (just find a maximal matching and take both
endpoints) gives a 2-approximation for VC .

VC is NP-hard to approximate within a factor of 1.3606. [Dinur &
Safra, 2005]

If UGC is true, VC cannot be approximated within any constant
factor better than 2. [Khot & Regev, 2008]

Independent Set:

There is a completely trivial (1/n)-approximation algorithm to the
problem: return any vertex of the graph.

For every ε > 0 there is no (1/n1−ε)-approximation algorithm for IS .
[Zuckerman, 2007]

No (2O(
√
logd)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]

Vasilis Margonis (ALMA) PCP May 11, 2017 36 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Max-Cut & Metric TSP

Max-Cut:

It has been proven that MAX -CUT is NP-hard to approximate with
an approximation ratio better than 16/17 ≈ 0.941. [Håstad, 2001]

Using semidefinite programming, there is an approximation algorithm
with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]

If UGC is true, this is the best possible approximation ratio for
MAX -CUT . [Khot et al., 2007]

Metric TSP:

The best known approximation ratio is 3/2 [Christofides, 1976].

There is an 8/7-approximation algorithm if the distances are restricted
to 1 and 2 (but still are a metric). [Berman & Karpinski, 2006]

There is no polynomial time algorithm for Metric TSP with
performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]

Vasilis Margonis (ALMA) PCP May 11, 2017 37 / 40

Colorability

For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]

There is no polynomial time algorithm that colors every 3-colorable
graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.

Vasilis Margonis (ALMA) PCP May 11, 2017 38 / 40

Colorability

For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]

There is no polynomial time algorithm that colors every 3-colorable
graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.

Vasilis Margonis (ALMA) PCP May 11, 2017 38 / 40

Colorability

For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]

There is no polynomial time algorithm that colors every 3-colorable
graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.

Vasilis Margonis (ALMA) PCP May 11, 2017 38 / 40

Colorability

For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]

There is no polynomial time algorithm that colors every 3-colorable
graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.

Vasilis Margonis (ALMA) PCP May 11, 2017 38 / 40

Colorability

For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]

There is no polynomial time algorithm that colors every 3-colorable
graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.

Vasilis Margonis (ALMA) PCP May 11, 2017 38 / 40

Bibliography

1 How NP Got a New Definition: A Survey of Probabilistically
Checkable Proofs.
Sanjeev Arora. ICM, 2002.

2 Computational Complexity: A Modern Approach.
Sanjeev Arora, Boaz Barak. Cambridge University Press, 2009.

3 Inapproximability of Combinatorial Optimization Problems.
Luca Trevisan. ECCC, 2004.

4 Probabilistic Checking of Proofs: A New Characterization of NP
Sanjeev Arora, Shmuel Safra. ACM, 1998.

5 Approximation Algorithms.
Vijay V. Vazirani. Springer, 2003.

Vasilis Margonis (ALMA) PCP May 11, 2017 39 / 40

Thank You!

Vasilis Margonis (ALMA) PCP May 11, 2017 40 / 40

	Introduction
	The PCP Theorem, a new characterization of NP
	The Hardness of Approximation View
	An optimal inapproximability result for MAX-3SAT
	Inapproximability results for other known problems

