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w-Automata

A nondeterministic finite automaton (NFA) is a quintuple, (Q, X, 6, qo, F),
consisting of

> a finite set of states Q,

> a finite set of input symbols 3,

> a transition function ¢ : Q X ¥ — Pow(Q),
> an initial state go € Q,
>

a set of states F distinguished as accepting (or final) states F' C Q.

NFA for a* + (ab)*:

[ REG is the class of languages recognised by a finite automaton. ]
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w-Automata

An w-automaton is a quintuple (Q, X3, d, go, Acc), where
Q is a finite set of states,
Y is a finite alphabet,

>
>
> §:Q x X — Pow(Q) is the state transition function,
> go € Q is the initial state,

>

Acc is the acceptance component (this corresponds to F in the case of
finite automata).

In a deterministic w-automaton, a transition function 6 : Q x ¥ — Q is used.

Let A = (Q,%,0,q0,Acc) be an w-automaton. A run of A on an w-
word (stream) « = ajas... € X“ is a countable infinite state sequence
p=p(0)p(1)p(2)... € O, such that the following conditions hold:

1. p(0) = qo

2. p(i) € 0(p(i—1),qa;) fori > 1 if A is nondeterministic,
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w-Automata

For a run p of an w-automaton, let Inf(p) = {q € Q : ViTdj > i p(j) = g} (i.e.
the set of states visited infinitely often).

An w-automaton A = (Q, X, 9, qo, Acc) is called

* Biichi automaton if Acc = F C Q and the acceptance condition is the
following: A stream o € 3% is accepted by A iff there exists a run p of A on «
satisfying the condition: Inf(p) N F # 0.

Biichi automaton for (a + b)*a“ + (a + b)* (ab)* with F = {q1,q3}
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w-Automata

An w-automaton A = (Q, 3, J, qo, Acc) is called

* Muller automaton if Acc = F C Pow(Q) and the acceptance condition is the
following: A stream o € 3% is accepted by A iff there exists a run p of A on «
satisfying the condition: Inf(p) € F.

Muller automaton for (a + b)*a“ + (a + b)*b* with F = {{qa}, {a»}}
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w-Automata

An w-automaton A = (Q, X, §, qo, Acc) is called
* Rabin automaton if Acc = {(E1, F1), ..., (Ex, Fx)}, with E;, F; C Q,
1 < i < k, and the acceptance condition is the following: A stream o € X% is
accepted by A iff there exists a run p of A on « satisfying the condition:
(E,F) € Acc(Inf(p) NE = 0) A (Inf(p) N F # 0).

Rabin automaton for (a + b)*a* withAcc = {({q1}, {90 })}
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w-Automata

An w-automaton A = (Q, X, 9, qo, Acc) is called

* Streett automaton if Acc = {(E1, F1), ..., (Ex, Fx)}, with E;, F; C Q,
1 < i < k, and the acceptance condition is the following: A stream o € X% is
accepted by A iff there exists a run p of A on « satisfying the condition:
—(3(E, F) € Acc(Inf(p) NE = 0) A (Inf(p) N F # (), i.e.
V(E, F) € Acc(Inf(p) NE # 0) V (Inf(p) N F = 0) (or
V(E,F) € Acc(Inf(p) N F # 0) — (Inf(p) NE # 0)).

Streett automaton with Acc = {({qp}, {qa})}-
Each stream in the accepted language contains infinitely many a’s only if it contains infinitely many b’s (or equivalently they
have finitely many a’s or infinitely many b’s), e.g. (a + b)*b% + (a*b)*
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w-Automata

The Biichi recognizable w-languages are the w-languages of the form

L=UV{ +UxV5 ... U V¢ withk € wand U;, V; € REG fori =1, ..., k.

This family of w-languages is also called the w-Kleene closure of the class of
regular languages and is commonly referred to as w-REG.

The emptiness problem for Biichi automata is decidable.
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w-Automata

Muller automata are equally expressive as nondeterministic Biichi automata.

Proof: On the board.

Rabin automata and Streett automata are equally expressive as Muller au-
tomata.

Proof:

* For a Rabin automaton A = (Q, X, 4, go, Acc), define the Muller automaton
A" =(0,%,46,q0,F), where
F ={G € Pow(Q)|3(E,F) € Acc. GNE=0AGNF # 0}.
For a Streett automaton A = (Q, X, §, qo, Acc), define the Muller automaton
A" =(0,%,46,q0,F), where
F ={G € Pow(Q)|V(E,F) € Acc. GNE# 0OV GNF = 0}.
Conversely, given a Muller automaton, transform it into a nondeterministic
Biichi automaton.
Biichi acceptance can be viewed as a special case of Rabin acceptance, where
Acc = {(0, F)}, as well as a special case of Streett acceptance, where

Ace = {(F,Q)}.
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w-Automata

An w-automaton A = (Q, 3, 9, go, ¢) with acceptance component

¢: 0 —{1,...,k} (where k € w) is called parity automaton if it is used with
the following acceptance condition:

A stream o € X is accepted by A iff there exists a run p of A on o with

min{c(q)|q € Inf(p)} is even

a b

Parity automaton A with colouring function ¢ defined by c¢(g;) = i.
L(A) = ab(a*cb*c)*a®
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w-Automata

[ Parity automata can be converted into Rabin automata. ]

Proof: LetA = (Q, X, §, qo, ) be a parity automaton with ¢ : Q — {0, ...,k}. An
equivalent Rabin automaton A’ = (Q, %, 4, qo, Acc) has the acceptance component
Acc = {(Eo, Fo), ..., (E-,Fr)}, r= | 5],

Ei = {q € Qlc(q) < 2i} and Fi = {q € Qlc(q) < 2i}.

Muller automata can be converted into parity automata (a special case of Ra-
bin automata).

Proof: On the board.
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w-Automata

» Nondeterministic Biichi, Muller, Rabin, Streett, and parity automata
are all equivalent in expressive power, i.e. they recognize the same
w-languages.

» The w-languages recognized by these w-automata form the class
w-KC(REG), i.e. the w-Kleene closure of the class of regular
languages.

* NFAs are equivalent to DFAs.
* NPDAs are not equivalent to DPDAs.

* Nondeterministic w-automata are equivalent to deterministic ones?

iki Chalki Infinite Automata, Logics and Games



w-Automata

Deterministic vs Nondeterministic Biichi Automata

There exist languages which are accepted by some nondeterministic Biichi-
automaton but not by any deterministic Biichi automaton.

Proof. The following automaton is a nondeterministic Biichi automaton for
L= (a+b)"a”.

ab N
/ "\

I Y
o f\
\/
Assume that there is a deterministic Biichi automaton A for the language L.

Then there exist ng, n1,n2, ... such that A accepts the stream
w=da"ba" ba"?b... ¢ L.

Angeliki Chalki Infinite Automata, Logics and Games



w-Automata

> Deterministic Muller, Rabin, Streett, and parity automata recognize
the same w-languages.

> The class of w-languages recognized by any of these types of
w-automata is closed under complementation.

Proof:

» The transformations between nondeterministic automata work for deterministic
ones except for those that use nondeterministic Biichi automata.

NRabin — NStreett: NRabin — NMuller — NBiichi — NStreett

DRabin — DStreett: DRabin for L — DMuller for L — DMuller for L
— DRabin for L — DStreett for L

> The languages recognizable by deterministic Muller automata are closed under
union, intersection and complementation.
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w-Automata

DMuller = DRabin = DStreett = NBuchi = NMuller = NRabin = NStreett

DBuchi
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w-Automata

Automata

Every nondeterministic Biichi automaton can be transformed into an equiva-
lent deterministic Muller automaton (or a deterministic Rabin automaton).

> The powerset construction fails in case of Biichi automata.
> Muller (°63) presented a faulty construction.

» McNaughton (’66) showed that a Biichi automaton can be transformed
effectively into an equivalent deterministic Muller automaton.

» Safra’s construction (’88) leads to deterministic Rabin or Muller automata:
given a nondeterministic Biichi automaton with # states, the equivalent
deterministic automaton has 2°"¢") states.

> For Rabin automata, Safra’s construction is optimal. The question whether it
can be improved for Muller automata is open.

» Muller and Schupp (°95) presented a ‘more intuitive’ alternative, which is also
optimal for Rabin automata.

Angeliki Chalki Infinite Automata, Logics and Games



Tree Automata

The infinite binary tree 7% is the set {0, 1}* of all strings on {0, 1}.

» The elements u € T% are the nodes of 7* where ¢ is the root and

u0, ul are the immediate left and right successors of node u.

> Astream 7 € {0,1}* is called a path of the binary tree T*.

The set of all X-labelled trees, 7%, contains trees where each node is
labelled with a symbol of the alphabet X, i.e. trees with a mapping
t: 7% — X,

T : a
0 1 :

/ o\ \ /
/ / \

W oo 10 1 a b
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Tree Automata

A Muller tree automaton is a quintuple A = (Q, X, §, go, F), where
> () is a finite set of states ,

Y. is a finite alphabet,

0 :Q x 3 — Pow(Q x Q) denotes the transition relation,

go is an initial state,

vV V. v Y

F C Pow(Q) is a set of designated state sets.

> Arunof A onaninputtree t € Tx is atree p € Tp, satisfying
ple) = qo and forall w € {0, 1}*: 6(p(w), 1(w)) = (p(w0), p(w1)).
> A run is called successful if for each path = € {0, 1}* the Muller
acceptance condition is satisfied, that is, if Inf(p|7) € F.

> A accepts the tree ¢ if there is a successful run of A on z.

> The tree language recognized by A is the set
T(A) = {t € T*|A accepts t}.
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Tree Automata

Example: A = ({qo, 9a, g5, 44}, {a, b}, 3, qo, F), where § includes:

(96, 494), 3(q0,b) = (qa, qp)
(945 qa)

(610761d), 5(qa, @) = (44, 90)
(90, qa), 0(qn, b) = (ga, q0)-

(g0, a) = (qa;qa), 6(qo, a) = (qu; qa),

)> 6(qo,
5(%7 ) (%,%%5

), 0

), 0

(q0,b) =
(Qd, ) 5
)=
)=

6(qa,b) = (qv,494), 6(qa, b) = (qa, q»).
5(qb7a) = (Qde) 5(Qb, ) (qd>% s

(qa, a
(qb7 b

a b a: b 4 l.f)“:' @ qd

First transitions of p
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Tree Automata

Example: The Muller tree automaton A = ({qo, ga, g», g4}, {a, b}, 9, g0, F), where §
includes:

6(q07 a) = (qa7 qd)’ 6(q0’ a) (qda qa)’ 6(q07 ) (Qb, qd)’ 5(q07 ) (qd7 qb)’
6(qa, a) = (qa,qa), 6(qa, b) = (qa, qa)s

6(qa, ) = (qv,494), 6(qa,b) = (qa,q»), 6(qa,a) = (qo, qa), 6(¢a; @) = (4a; qo),

6(qb7a) = (qa7qd) (qb7 ) (qd7qa)’ 6(qb7b) (q07qd)7 6( ) (qda qo)'

and F = {{qa, g}, {qa}} recognizes the tree language
T = {t € T(,y| there is a path 7 through  such that 7|7 € (a + b)" (ab)“'}.
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Tree Automata

Example: The Muller tree automaton A = ({qo, g1, 92}, {a, b}, 0,90, {{q0}}),
where ¢ includes the transitions:

(g0, a) = (90, 90), &(
3(q1,b) = (q1,41), 6(

recognizes the tree language
T = {t € T{a}| any path through ¢ carries only finitely many 5s}.

q0>b) = (‘117511),
q1,a) = (4o, qo).

The above language T can not be recognized by a Biichi tree automaton.

Biichi tree automata are strictly weaker than Muller tree automata.

Muller, Rabin, Streett, and parity tree automata all recognize the same tree
languages.
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Ehrenfeucht-Fraissé Games

> Games on Sets
Let A, B be sets, i.e. o = (). Let also |A|, |B| > n.
Then A =, B.

Proof. Suppose after i rounds that the position is ((ai, ..., ), (b1, ..., b;)).
When the spoiler picks an element a;+1 € |A|, then if

1. aiy1 = aj for j < i, then the duplicator responds with b; 11 = b;.

2. otherwise, the duplicator responds with any b;+1 € |B|—{b1, ..., b}, which
exists since ||B|| > n.
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Ehrenfeucht-Fraissé Games

» Games on Linear Orders

Let k > 0, and let L1, L» be linear orders of length at least ok,
Then L1 =k Lz.

Proof. Let L1 = {1,...,n} and Ly = {1, ...,m}, with n,m > 2* + 1, and
o' = {<, min, max}.
Leta = (a—1,ao,4a1,...,a;) and b = (b_1,bo, b1, ..., b;) after round i. Then, the
duplicator can play in such a way that the following hold for —1 < j,/ < i after each
round i:

1. 1ifd(aj,a;) < 27, then d(b;, by) = d(aj, ar).

2. ifd(aj,a)) > 2", then d(by, b)) > 2.

3. g, < ar s b < b
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Ehrenfeucht-Fraissé Games

Proof continued. The base case of i = 0 is immediate.
For the induction step, suppose the spoiler is making his (i + 1)st move in L1, such
that a; < a;11 < a;. By condition 3 of the inductive hypothesis b; < b;iy1 < b;.
There are two cases:
* d(aj,a;) < 27", By the inductive hypothesis d(b;, b;) = d(a;,a;). The
duplicator finds b4 so that d(a;, aiy1) = d(b;, biy1) and
d(a,-+1, al) = d(bi+1, b[).
* d(a;,a;) > 27", By inductive hypothesis d(b;, b)) > 2"~
We have three possibilities:

1. d(aj,aiy1) < 2570FD Then d(a;y1,a) = 257D, and the
duplicator chooses b1 so that d(b;, bi11) = d(a;,a;41) and
d(biy1,by) > 280+,

2. d(ajy1,a;) < 2k=(i+1) | This case is similar to the previous one.

3. d(aj,a,url) > 2k_(i+1), d(dprha[) > 2k_(i+1). Since
d(b;, by) > 2%~ by choosing b;+1 to be the middle of the interval
[b;, bi], duplicator ensures that d(b;, biy1) > 20+ and
d(bi1,by) = 280+,

Angeliki Chalki Infinite Automata, Logics and Games



Ehrenfeucht-Fraissé Games

Ehrenfeucht-Fraissé Theorem

Let A and B be two o-structures, where o is a relational vocabulary. Then the
following are equivalent:

1. A and B agree on FO[K].
2. A= B.

Corollary

A property P of finite o-structures is not expressible in FO if for every k € N,
there exist two finite o-structures, A and By, such that:

® Ay = B, and

* Ay has property P, and By does not.

EVEN is not FO-expressible over linear orders.
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Ehrenfeucht-Fraissé Games

Ehrenfeucht-Fraissé Theorem

Let A and B be two o-structures, where o is a relational vocabulary. Then the
following are equivalent:

1. A and B agree on FO[K].
2. A= B.

Corollary1

A property P of finite o-structures is not expressible in FO if for every k € N,
there exist two finite o-structures, A and By, such that:

® Ay = B, and

* Ay has property P, and By does not.

EVEN is not FO-expressible over linear orders.
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Ehrenfeucht-Fraissé Games

A property P is expressible in FO iff there exists a number k such that for every
two structures A, B, if A € P and A =, B, then B € P.

Proof.

* If P is expressible by an FO sentence ®, let k = gr(®). IfA € P, thenA = @,
and hence for B with A = B, we have B |= ®. Thus, B € P.

* If A € P and we force A to agree on all FO[k] sentences with B, then B € P. A
and B have the same rank-k type, and hence P is a union of types, and thus
definable by a disjunction of some of the ak’s.
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Ehrenfeucht-Fraissé Games

Ehrenfeucht-Fraissé Theorem

Let A and B be two o-structures, where o is a relational vocabulary. Then the
following are equivalent:

1. A and B agree on FO[k].

2. A >k B.

Proof. 1 = 2: Assume A and B agree on all quantifier-rank £ 4 1 sentences.

For the forth condition: Pick a € |A|, and let ; be its rank-k 1-type. Then

A & 3xai(x), where Jxa;(x) is a sentence of quantifier-rank k + 1. Hence

B = 3xai(x). Let b be the witness for the existential quantifier, that is,

ipk(A, a) = tpi(B, b). Equivalently for every ¥ with gr(v)) = k, A = ¢ iff B = 4.
By inductive hypothesis, (4, a) ~ (B, b).

2 = 1: Assume A ~11 B. Every FO[k + 1] sentence is a boolean combination of
Ix¢p(x), where ¢ € FO[K].

Assume that A |= Jx¢p(x), so A |= ¢(a) for some a € |A|. By forth, find b € |B| such
that (A, a) ~ (B, b). By inductive hypothesis, (4, a) and (B, b) agree on FOIk].
Hence, B = ¢(b), and thus B |= Jx¢p(x).
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