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A nondeterministic finite automaton (NFA) is a quintuple, (Q,Σ, δ, q0,F),
consisting of

▶ a finite set of states Q,
▶ a finite set of input symbols Σ,
▶ a transition function δ : Q × Σ → Pow(Q),
▶ an initial state q0 ∈ Q,
▶ a set of states F distinguished as accepting (or final) states F ⊆ Q.

NFA for a∗ + (ab)∗:

REG is the class of languages recognised by a finite automaton.

Angeliki Chalki Infinite Automata, Logics and Games
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An ω-automaton is a quintuple (Q,Σ, δ, q0,Acc), where
▶ Q is a finite set of states,
▶ Σ is a finite alphabet,
▶ δ : Q × Σ → Pow(Q) is the state transition function,
▶ q0 ∈ Q is the initial state,
▶ Acc is the acceptance component (this corresponds to F in the case of

finite automata).
In a deterministic ω-automaton, a transition function δ : Q×Σ → Q is used.

Let A = (Q,Σ, δ, q0,Acc) be an ω-automaton. A run of A on an ω-
word (stream) α = a1a2... ∈ Σω is a countable infinite state sequence
ρ = ρ(0)ρ(1)ρ(2)... ∈ Qω , such that the following conditions hold:

1. ρ(0) = q0

2. ρ(i) ∈ δ(ρ(i−1), ai) for i ⩾ 1 if A is nondeterministic,

Angeliki Chalki Infinite Automata, Logics and Games
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For a run ρ of an ω-automaton, let Inf(ρ) = {q ∈ Q : ∀i∃j > i ρ(j) = q} (i.e.
the set of states visited infinitely often).

An ω-automaton A = (Q,Σ, δ, q0,Acc) is called
• Büchi automaton if Acc = F ⊆ Q and the acceptance condition is the

following: A stream α ∈ Σω is accepted by A iff there exists a run ρ of A on α
satisfying the condition: Inf(ρ) ∩ F ̸= ∅.

Büchi automaton for (a + b)∗aω + (a + b)∗(ab)ω with F = {q1, q3}

Angeliki Chalki Infinite Automata, Logics and Games
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An ω-automaton A = (Q,Σ, δ, q0,Acc) is called
• Muller automaton if Acc = F ⊆ Pow(Q) and the acceptance condition is the

following: A stream α ∈ Σω is accepted by A iff there exists a run ρ of A on α
satisfying the condition: Inf(ρ) ∈ F .

Muller automaton for (a + b)∗aω + (a + b)∗bω with F = {{qa}, {qb}}

Angeliki Chalki Infinite Automata, Logics and Games
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An ω-automaton A = (Q,Σ, δ, q0,Acc) is called
• Rabin automaton if Acc = {(E1,F1), ..., (Ek,Fk)}, with Ei,Fi ⊆ Q,
1 ⩽ i ⩽ k, and the acceptance condition is the following: A stream α ∈ Σω is
accepted by A iff there exists a run ρ of A on α satisfying the condition:
∃(E,F) ∈ Acc(Inf(ρ) ∩ E = ∅) ∧ (Inf(ρ) ∩ F ̸= ∅).

Rabin automaton for (a + b)∗aω with Acc = {({q1}, {q0})}

Angeliki Chalki Infinite Automata, Logics and Games
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An ω-automaton A = (Q,Σ, δ, q0,Acc) is called
• Streett automaton if Acc = {(E1,F1), ..., (Ek,Fk)}, with Ei,Fi ⊆ Q,
1 ⩽ i ⩽ k, and the acceptance condition is the following: A stream α ∈ Σω is
accepted by A iff there exists a run ρ of A on α satisfying the condition:
¬(∃(E,F) ∈ Acc(Inf(ρ) ∩ E = ∅) ∧ (Inf(ρ) ∩ F ̸= ∅)), i.e.
∀(E,F) ∈ Acc(Inf(ρ) ∩ E ̸= ∅) ∨ (Inf(ρ) ∩ F = ∅)

(
or

∀(E,F) ∈ Acc(Inf(ρ) ∩ F ̸= ∅) → (Inf(ρ) ∩ E ̸= ∅)
)
.

Streett automaton with Acc = {({qb}, {qa})}.
Each stream in the accepted language contains infinitely many a’s only if it contains infinitely many b’s (or equivalently they
have finitely many a’s or infinitely many b’s), e.g. (a + b)∗bω + (a∗b)ω

Angeliki Chalki Infinite Automata, Logics and Games
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The Büchi recognizable ω-languages are the ω-languages of the form

L = U1Vω
1 + U2Vω

2 . . .UkVω
k with k ∈ ω and Ui,Vi ∈ REG for i = 1, ..., k.

This family of ω-languages is also called the ω-Kleene closure of the class of
regular languages and is commonly referred to as ω-REG.

The emptiness problem for Büchi automata is decidable.

Angeliki Chalki Infinite Automata, Logics and Games
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Muller automata are equally expressive as nondeterministic Büchi automata.

Proof: On the board.

Rabin automata and Streett automata are equally expressive as Muller au-
tomata.

Proof:
• For a Rabin automaton A = (Q,Σ, δ, q0,Acc), define the Muller automaton

A′ = (Q,Σ, δ, q0,F), where
F = {G ∈ Pow(Q)|∃(E,F) ∈ Acc.G ∩ E = ∅ ∧ G ∩ F ̸= ∅}.
For a Streett automaton A = (Q,Σ, δ, q0,Acc), define the Muller automaton
A′ = (Q,Σ, δ, q0,F), where
F = {G ∈ Pow(Q)|∀(E,F) ∈ Acc.G ∩ E ̸= ∅ ∨ G ∩ F = ∅}.

• Conversely, given a Muller automaton, transform it into a nondeterministic
Büchi automaton.
Büchi acceptance can be viewed as a special case of Rabin acceptance, where
Acc = {(∅,F)}, as well as a special case of Streett acceptance, where
Acc = {(F,Q)}.

Angeliki Chalki Infinite Automata, Logics and Games



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline
ω-Automata

Tree Automata
Ehrenfeucht-Fraïssé Games

An ω-automaton A = (Q,Σ, δ, q0, c) with acceptance component
c : Q → {1, ..., k} (where k ∈ ω) is called parity automaton if it is used with
the following acceptance condition:
A stream α ∈ Σω is accepted by A iff there exists a run ρ of A on α with

min{c(q)|q ∈ Inf(ρ)} is even

Parity automaton A with colouring function c defined by c(qi) = i.
L(A) = ab(a∗cb∗c)∗aω

.

Angeliki Chalki Infinite Automata, Logics and Games
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Parity automata can be converted into Rabin automata.

Proof: Let A = (Q,Σ, δ, q0, c) be a parity automaton with c : Q → {0, ..., k}. An
equivalent Rabin automaton A′ = (Q,Σ, δ, q0,Acc) has the acceptance component
Acc = {(E0,F0), ..., (Er,Fr)}, r = ⌊ k

2
⌋,

Ei = {q ∈ Q|c(q) < 2i} and Fi = {q ∈ Q|c(q) ⩽ 2i}.

Muller automata can be converted into parity automata (a special case of Ra-
bin automata).

Proof: On the board.

Angeliki Chalki Infinite Automata, Logics and Games
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▶ Nondeterministic Büchi, Muller, Rabin, Streett, and parity automata
are all equivalent in expressive power, i.e. they recognize the same
ω-languages.

▶ The ω-languages recognized by these ω-automata form the class
ω-KC(REG), i.e. the ω-Kleene closure of the class of regular
languages.

• NFAs are equivalent to DFAs.
• NPDAs are not equivalent to DPDAs.
• Nondeterministic ω-automata are equivalent to deterministic ones?

Angeliki Chalki Infinite Automata, Logics and Games
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Deterministic vs Nondeterministic Büchi Automata

There exist languages which are accepted by some nondeterministic Büchi-
automaton but not by any deterministic Büchi automaton.

Proof. The following automaton is a nondeterministic Büchi automaton for
L = (a + b)∗aω .

Assume that there is a deterministic Büchi automaton A for the language L.
Then there exist n0, n1, n2, ... such that A accepts the stream
w = an0ban1ban2b... /∈ L.

Angeliki Chalki Infinite Automata, Logics and Games
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▶ Deterministic Muller, Rabin, Streett, and parity automata recognize
the same ω-languages.

▶ The class of ω-languages recognized by any of these types of
ω-automata is closed under complementation.

Proof :
▶ The transformations between nondeterministic automata work for deterministic

ones except for those that use nondeterministic Büchi automata.

NRabin −→ NStreett: NRabin −→ NMuller −→ NBüchi −→ NStreett

DRabin −→ DStreett: DRabin for L −→ DMuller for L −→ DMuller for L
−→ DRabin for L −→ DStreett for L

▶ The languages recognizable by deterministic Muller automata are closed under
union, intersection and complementation.

Angeliki Chalki Infinite Automata, Logics and Games
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DMuller = DRabin = DStreett = NBuchi = NMuller = NRabin = NStreett

DBuchi
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Determinization of Büchi Automata

Every nondeterministic Büchi automaton can be transformed into an equiva-
lent deterministic Muller automaton (or a deterministic Rabin automaton).

▶ The powerset construction fails in case of Büchi automata.
▶ Muller (’63) presented a faulty construction.
▶ McNaughton (’66) showed that a Büchi automaton can be transformed

effectively into an equivalent deterministic Muller automaton.

▶ Safra’s construction (’88) leads to deterministic Rabin or Muller automata:
given a nondeterministic Büchi automaton with n states, the equivalent
deterministic automaton has 2O(nlogn) states.

▶ For Rabin automata, Safra’s construction is optimal. The question whether it
can be improved for Muller automata is open.

▶ Muller and Schupp (’95) presented a ‘more intuitive’ alternative, which is also
optimal for Rabin automata.

All the above ω-automata, except for deterministic Büchi, recognize the same
ω-languages.

Angeliki Chalki Infinite Automata, Logics and Games
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▶ The infinite binary tree Tω is the set {0, 1}∗ of all strings on {0, 1}.
▶ The elements u ∈ Tω are the nodes of Tω where ϵ is the root and

u0, u1 are the immediate left and right successors of node u.
▶ A stream π ∈ {0, 1}ω is called a path of the binary tree Tω .
▶ The set of all Σ-labelled trees, Tω

Σ, contains trees where each node is
labelled with a symbol of the alphabet Σ, i.e. trees with a mapping
t : Tω → Σ.

Angeliki Chalki Infinite Automata, Logics and Games
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A Muller tree automaton is a quintuple A = (Q,Σ, δ, q0,F), where
▶ Q is a finite set of states ,
▶ Σ is a finite alphabet,
▶ δ : Q × Σ → Pow(Q × Q) denotes the transition relation,
▶ q0 is an initial state,
▶ F ⊆ Pow(Q) is a set of designated state sets.

▶ A run of A on an input tree t ∈ TΣ is a tree ρ ∈ TQ, satisfying
ρ(ϵ) = q0 and for all w ∈ {0, 1}∗: δ(ρ(w), t(w)) = (ρ(w0), ρ(w1)).

▶ A run is called successful if for each path π ∈ {0, 1}ω the Muller
acceptance condition is satisfied, that is, if Inf(ρ|π) ∈ F .

▶ A accepts the tree t if there is a successful run of A on t.
▶ The tree language recognized by A is the set

T(A) = {t ∈ Tω|A accepts t}.

Angeliki Chalki Infinite Automata, Logics and Games
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Example: A = ({q0, qa, qb, qd}, {a, b}, δ, q0,F), where δ includes:

δ(q0, a) = (qa, qd), δ(q0, a) = (qd, qa), δ(q0, b) = (qb, qd), δ(q0, b) = (qd, qb),
δ(qd, a) = (qd, qd), δ(qd, b) = (qd, qd),

δ(qa, b) = (qb, qd), δ(qa, b) = (qd, qb), δ(qa, a) = (q0, qd), δ(qa, a) = (qd, q0),
δ(qb, a) = (qa, qd), δ(qb, a) = (qd, qa), δ(qb, b) = (q0, qd), δ(qb, b) = (qd, q0).

First transitions of ρ

Angeliki Chalki Infinite Automata, Logics and Games
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Example: The Muller tree automaton A = ({q0, qa, qb, qd}, {a, b}, δ, q0,F), where δ
includes:

δ(q0, a) = (qa, qd), δ(q0, a) = (qd, qa), δ(q0, b) = (qb, qd), δ(q0, b) = (qd, qb),
δ(qd, a) = (qd, qd), δ(qd, b) = (qd, qd),

δ(qa, b) = (qb, qd), δ(qa, b) = (qd, qb), δ(qa, a) = (q0, qd), δ(qa, a) = (qd, q0),
δ(qb, a) = (qa, qd), δ(qb, a) = (qd, qa), δ(qb, b) = (q0, qd), δ(qb, b) = (qd, q0).

and F = {{qa, qb}, {qd}} recognizes the tree language
T = {t ∈ T{a,b}| there is a path π through t such that t|π ∈ (a + b)∗(ab)ω}.
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Example: The Muller tree automaton A = ({q0, q1, q2}, {a, b}, δ, q0, {{q0}}),
where δ includes the transitions:

δ(q0, a) = (q0, q0), δ(q0, b) = (q1, q1),
δ(q1, b) = (q1, q1), δ(q1, a) = (q0, q0).

recognizes the tree language
T = {t ∈ T{a,b}| any path through t carries only finitely many b′s}.

The above language T can not be recognized by a Büchi tree automaton.

Büchi tree automata are strictly weaker than Muller tree automata.

Muller, Rabin, Streett, and parity tree automata all recognize the same tree
languages.

Angeliki Chalki Infinite Automata, Logics and Games



Ehrenfeucht-Fraïssé Games

I We need a tool better tailored for finite models.
I Answer: Ehrenfeucht-Fraïssé Games!



Rules of the Game

I The game is played by two players called S(or spoiler) and
D(or duplicator).

I The game is played on two structures A and B over the same
vocabulary σ.

I The game is played for a predetermined positive integer k
number of rounds.
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I The game is played for a predetermined positive integer k
number of rounds.



Rules of the Game

I In each round i, S picks an element of one of the two
structure. Then D picks an element of the other structure.

I Each round produces a pair (ai , bi ) where ai ∈ A, bi ∈ B
I D wins the run if the mapping

ai 7→ bi , 1 ≤ i ≤ k and cAj 7→ cBj , 1 ≤ j ≤ s

is a partial isomorphism form A to B.
I Otherwise S wins the run.
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Rules of the Game

I In each round i, S picks an element of one of the two
structure. Then D picks an element of the other structure.

I Each round produces a pair (ai , bi ) where ai ∈ A, bi ∈ B
I D wins the run if the mapping

ai 7→ bi , 1 ≤ i ≤ k and cAj 7→ cBj , 1 ≤ j ≤ s

is a partial isomorphism form A to B.
I Otherwise S wins the run.



Rules of the Game

I If D has a winning strategy to win the k-move
Ehrenfeucht-Fraïssé Game on A and B, we write A ≡k B.



Examples

Let A B be sets with |A|, |B| ≥ k elements. D has a winning
strategy for this game.
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Examples

I Why does S have a winning strategy for the 3-move game?

I We can find a sentence that is true for B and false for A

∃x∃y∃z((x 6= y)∧(x 6= z)∧(y 6= z)∧¬E (x , y)∧¬E (x , z)∧¬E (y , z))

I Or a sentence that is true for A and false for B

∀x∀y∃z((x 6= y ∧ (E (x , y) ∨ E (y , z)))

I What do these sentences have in common?
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Quantifier Rank

Definition 3
The Quantifier Rank of a formula qr(φ) is its depth of quantifier
nesting.
We use the notation FO [k] for al FO formulae of quantifier rank
up to k.

Examples
I The sentences from the previous example both had qr = 3.
I (∃xE (x , x)) ∨ (∃y∀z¬E (y , z)) has qr = 2.



Quantifier Rank

Definition 4
Let k ∈ N and A,B σ-structures. We say that A ∼k B agree on
FO[k] iff A,B satisfy the same sentences of FO[k].



The Ehrenfeucht-Fraïssé Theorem

Theorem 5
The following are equivalent:
1. A and B agree on FO[k]
2. A ≡k B

How can we use this theorem to prove that a Query is not definable
in FO?
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Method

Corollary
A query Q is not definable in FO if for every k ∈ N, there exists
two finite σ-structures Ak ,Bk such that:
I Ak ≡k Bk

I Q(A) 6= Q(B)
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