
Approximation Algorithms

Presentation: Valia Mitsou

Approximation Algorithms – p. 1/43

Outline

1. Introduction

2. Vertex Cover

3. Knapsack

4. TSP

Approximation Algorithms – p. 2/43

1. Introduction

Approximation Algorithms – p. 3/43

Optimization Problems

• Optimization Problem: Every instance of the problem
corresponds to some feasible solutions each of them having
a value via an Objective Function.

• We seek for an Optimal Solution i.e. a feasible solution that
has an optimal value.

• Optimization problems can be either Maximization or
Minimization

• Example: The Vertex Cover Problem
◦ Min or Max: Mimimization
◦ Instance: A graph
◦ Feasible Solutions: Every Vertex Cover
◦ Objective Function: The cardinality | ⋆ | function
◦ Optimal Solution: A Vertex Cover of minimum cardinality

Approximation Algorithms – p. 4/43

The PO-class (i)

Consider a minimization problem:
Given an instance of size n try to find the minimum possible

feasible solution.
Then the corresponding decision problem would be:

Given an instance of size n and a fixed k (in binary) is there
any feasible solution of value less or equal to k?

 If the decision version is polynomially solvable on n and log k
then we can construct a polynomial time algorithm for the
optimization version

Approximation Algorithms – p. 5/43

The PO-class (ii)

• Determine l, k = 2l such that there is a feasible solution of
value less or equal to 2l but there is not a feasible solution
of value less or equal to 2l−1, by running log k times the
polynomial time algorithm for the decision version.

• Then do binary search to find the exact value of k (log k
runs of the decision version algorithm).

This implies a polynomial time algorithm on the size of the input.
We call the class of problems that have a polynomial time
solvable decision version PO class (PO stands for
P-Optimization).

Approximation Algorithms – p. 6/43

The NPO-class

Problems in PO are polynomial time solvable. Thus we turn our
attention to NP-Optimization Problems (i.e. the corresponding
decision problem is in NP) and especially in NP-hard problems.
Unless P=NP we cannot have a polynomial time algorithm to
compute the optimal value for general instance of an NP-hard
problem.

• Solve the problem exactly on limited instances.
• Find polynomial time approximation algorithms

Approximation Algorithms – p. 7/43

Notation

• Π: Problem
• I: Instance
• SOLA(Π, I): The solution we obtain for the instance I of the

problem Π using algorithm A.
• OPT(Π, I): The optimal solution for the instance I of the

problem Π.

Note: We usually omit Π, I and A from the above notation.

Approximation Algorithms – p. 8/43

Approximability

• An algorithm A for a minimization problem Π achieves a ρA

approximation factor, (ρA : N → Q+) if for every instance I
of size |I| = n:

SOLA(I)

OPT(I)
≤ ρA(n)

• An algorithm A for a maximization problem Π achieves a ρA

approximation factor, (ρA : N → Q+) if for every instance I
of size |I| = n:

SOLA(I)

OPT(I)
≥ ρA(n)

 An approximation algorithm of factor ρ guarantees that the
solution that the algorithm computes cannot be worse than ρ
times the optimal solution.

Approximation Algorithms – p. 9/43

Approximation Schemes

Informally: We can have as good approximation factor as we
want trading off time.

Formally:
• A is an Approximation Scheme (AS) for problem Π if on

input (I, ε), where I an instance and ε > 0 an error
parameter:
◦ SOLA(I, ε) ≤ (1 + ε) · OPT(I), for minimization problem
◦ SOLA(I, ε) ≥ (1 − ε) · OPT(I), for maximization problem

• A is a PTAS (Polynomial Time AS) if for every fixed ε > 0 it
runs in polynomial time in the size of I.

• A is an FPTAS (Fully PTAS) if for every fixed ε > 0 it runs in
polynomial time in the size of I and in 1/ε.

Approximation Algorithms – p. 10/43

Approximation World

Depending on the approximation factor we have several classes
of approximation:

N P O

l o g n

A P X

P T A S

F P T A S

P O

• logn: ρ(n) = O(log n)

• APX: ρ(n) = ρ (constant factor approximation)

Approximation Algorithms – p. 11/43

Representatives

• Non-approximable: Traveling Salesman Problem
• logn: Set Cover

• APX: Ferry Cover
⊙

⌣̈

• PTAS: Makespan Scheduling
• FPTAS: Knapsack

Approximation Algorithms – p. 12/43

2. Vertex Cover

Approximation Algorithms – p. 13/43

The (Cardinality) Vertex Cover Problem

Definition: Given a graph G(V, E) find a minimum cardinality
Vertex Cover, i.e. a set V ′ ⊆ V such that every edge has at least
one endpoint in V ′.

• A trivial feasible solution would be the set V

• Finding a minimum cardinality Vertex Cover is NP-hard
(reduction from 3-SAT)

• An approximation algorithm of factor 2 will be presented

Approximation Algorithms – p. 14/43

Lower Bounding

A general strategy for obtaining a ρ-approximation algorithm (for
a minimization problem) is the following:

• Find a lower bound l of the optimal solution (l ≤ OPT)
• Find a factor ρ such that SOL = ρ · l

 The previous scheme implies SOL ≤ ρ · OPT

Approximation Algorithms – p. 15/43

Matchings

• Definition: Given a graph G(V, E) a matching is a subset of
the edges M ⊆ E such that no two edges in M share an
endpoint.

• Maximal Matching: A matching that no more edges can be
added.

• Maximum Matching: A maximum cardinality matching.

 Maximal Matching is solved in polynomial time with the
greedy algorithm
 Maximum Matching is also solved in polynomial time via a
reduction to max-flow

Approximation Algorithms – p. 16/43

A 2-Approximation Algorithm for Vertex Cover

• The Algorithm: Find a maximal matching M of the graph
and output the set V ′ of matched vertices

• Correctness:
◦ Edges belonging in M are all covered by V ′

◦ Since M is a maximal matching, any other edge
e ∈ E \ M will share at least one endpoint v with some
e′ ∈ M . So v is in V ′ and guards e.

• Analysis:
◦ Any vertex cover should pick at least one endpoint of

each matched edge → |M | ≤ OPT

◦ |V ′| = 2|M |

Thus SOL = |V ′| = 2|M | ≤ 2OPT ⇒ SOL ≤ 2OPT

 Vertex Cover is in APX

Approximation Algorithms – p. 17/43

Can we do better?

Questions
• Can the approximation guarantee be improved by a better

analysis?
• Can an approximation algorithm with a better guarantee be

designed using the same lower bounding scheme?
• Is there some other lower bounding methods that can lead

to an improved approximation algorithm?

Answers
• Tight Examples
• Other kind of examples
• This is not so immediate...

Approximation Algorithms – p. 18/43

Tight Examples

• A better analysis might imply an l′ s.t. l < l′ ≤ OPT. Then
there would be a ρ′ < ρ s.t. ρ · l = ρ′ · l′, so

SOL = ρ · l = ρ′ · l′ ≤ ρ′OPT

Thus we could obtain a better approximation factor ρ′ < ρ.
• Definition: An infinite family of instances in which l = OPT is

called Tight Example for the ρ-approximation algorithm.

• If l = OPT then there is no l′ > l s.t l′ ≤ OPT.
 So we can’t find a better factor by better analysis

Approximation Algorithms – p. 19/43

Tight Example for the matching algorithm

• The infinite family Kn,n of the complete balanced bipartite
graphs is a tight example.

• |M | = n = OPT. So the solution returned is 2 times the
optimal solution.

Approximation Algorithms – p. 20/43

Other kind of examples

• Using the same lower bound l ≤ OPT we might find a better
algorithm with ρ′ < ρ that computes SOL = ρ′ · l. This would
imply a better ρ′ approximation algorithm.

• An infinite family where l = 1
ρ

OPT implies that

SOL = l · ρ′ = 1
ρ
ρ′OPT < OPT (contradiction).

 Thus it is impossible to find another algorithm with better
approximation factor using the lower bound l ≤ OPT

Approximation Algorithms – p. 21/43

Using the matching lower bound

• The infinite family K2n+1 of the complete bipartite graphs
with odd number of vertices have an optimal vertex of
cardinality 2n

• A maximal matching could be |M | = n = 1
2OPT. So the

solution returned is the optimal solution.

Approximation Algorithms – p. 22/43

Other lower bounds for Vertex Cover

• This is still an open research area.
• Best known result for the approximation factor (until 2004) is

2 − Θ(1√
log n

) (due to George Karakostas)

• Uses Linear Programming.

Approximation Algorithms – p. 23/43

3. Knapsack

Approximation Algorithms – p. 24/43

Pseudo-polynomial time algorithms

• An instance I of any problem Π consists of objects (sets,
graphs,. . .) and numbers.

• The size of I (|I|) is the number of bits needed to write the
instance I.

• Numbers in I are written in binary
• Let Iu be the instance I where all numbers are written in

unary
• Definition: A pseudo-polynomial time algorithm is an

algorithm running in polynomial time in |Iu|

• Pseudo-polynomial time algorithms can be obtained using
Dynamic Programming

Approximation Algorithms – p. 25/43

Strong NP-hardness

• Definition: A problem is called strongly NP-hard if any
problem in NP can be polynomially reduced to it and
numbers in the reduced instance are written in unary

• Informally: A strongly NP-hard problem remains NP-hard
even if the input numbers are less than some polynomial of
the size of the objects.

 Strongly NP-hard problems cannot admit a
pseudo-polynomial time algorithm, assuming P 6= NP

(else we could solve the reduced instance in polynomial time,
thus we could solve every problem in NP in polynomial time.
That would imply P = NP)

Approximation Algorithms – p. 26/43

The existence of FPTAS

Theorem: For a minimization problem Π if ∀ instance I,
• OPT is strictly bounded by a polynomial of |Iu| and
• the objective function is integer valued

then Π admits an FPTAS ⇒ Π admits a pseudo-polynomial time
algorithm
 A strongly NP-hard problem (under the previous
assumptions) cannot admit an FPTAS unless P = NP

Approximation Algorithms – p. 27/43

The Knapsack Problem (i)

• Definition: The discrete version is given a set of n items
X = {x1, . . . , xn} where a profit : X → N and a
weight : X → N function are provided and a “knapsack” of
total capacity B ∈ N, find a subset Y ⊆ X whose total size
is bounded by B and maximizes the total profit.

• Definition: The continuous version is given a set of n
continuous items X = {x1, . . . , xn} where profit and weight
function are provided and a “knapsack” of total capacity
B ∈ N, find a sequence {w1, . . . , wn} of portions where
∑n

i=1 wi = B that maximizes the total profit.

Approximation Algorithms – p. 28/43

The Knapsack Problem (ii)

• The greedy algorithm (sort the objects by decreasing ratio
of profit to weight) solves in polynomial time the continuous
version

• The greedy algorithm can be made to perform arbitrarily
bad for the discrete version.

• Discrete Knapsack is NP-hard
• Pseudo-polynomial time and FPTAS algorithms will be

presented for the discrete version.
• For now on we focus on discrete knapsack and call it

“knapsack”

Approximation Algorithms – p. 29/43

A pseudo-polynomial time algorithm for knapsack (i)

• Let P be the profit of the most profitable object
• nP is a trivial upper bound on the total profit
• For i ∈ {1, . . . , n} and p ∈ {1, . . . , nP} let S(i, p) denote a

subset of {x1, . . . , xi} whose total profit is exactly p and its
total weight is minimized

• Let W (i, p) denote the weight of S(i, p) (∞ if no such a set
exists)

Approximation Algorithms – p. 30/43

A pseudo-polynomial time algorithm for knapsack (ii)

The following inductive relation computes all values W (i, p) in
O(n2P)

• W (1, p) is weight(x1) if p = profit(x1), ∞ else

• W (i + 1, p) =
{

W (i, p), profit(xi+1) > p

min{W (i, p), weight(xi+1) + W (i, p − profit(xi+1))}, else

The optimal solution of the problem is max{p|W (n, p) ≤ B}

 The optimal solution can be computed in polynomial time on n
and P

Approximation Algorithms – p. 31/43

An FPTAS for Knapsack

• Idea: The previous algorithm could be a polynomial time
algorithm if P was bounded by a polynomial of n

• Ignore a number of least significant bits of the profits of the
objects

• Modified profits profit′ should now be numbers bounded by
a polynomial of n and 1

ε
(ε is the error parameter)

• The algorithm:

1. Given ε > 0 define K = εP
n

2. Set new profit function profit′, profit′(xi) = ⌊profit(xi)
K

⌋

3. Run the pseudo-polynomial time algorithm described
previously and output the result

Approximation Algorithms – p. 32/43

Analysis

Theorem: The previous algorithm is an FPTAS

1. SOL ≥ (1 − ε)OPT

2. Runs in polynomial time in n and 1
ε

Proof:

1. Let S and O denote the output set and the optimal set

• profit′(xi) = ⌊profit(xi)
K

⌋ ⇒

profit(xi) ≥ K · profit′(xi) ≥ profit(xi) − K

• K = εP
n

• profit′(S) ≥ profit′(O)
• OPT ≥ P

Thus, SOL = profit(S) ≥ K · profit′(S) ≥ K · profit′(O) ≥
profit(O) − nK = OPT − εP ≥ (1 − ε) · OPT

2. The algorithm’s running time is O(n2⌊ P
K
⌋) = O(n2⌊n

ε
⌋)

Approximation Algorithms – p. 33/43

4. TSP

Approximation Algorithms – p. 34/43

Hardness of Approximation

To show that an optimization problem Π is hard to approximate
we can use

• A Gap-introducing reduction: Reduces an NP-complete
decision problem Π′ to Π

• A Gap-preserving reduction: Reduces a hard to
approximate optimization problem Π′ to Π

Approximation Algorithms – p. 35/43

Gap-introducing reductions (i)

Suppose that Π′ is a decision problem and Π a minimization
problem (similar for maximization).
A reduction h from Π′ to Π is called gap-introducing if:

1. Transforms (in polynomial time) any instance I ′ of Π′ to an
instance I = h(I ′) of Π

2. There are functions f and α s.t.
• If I ′ is a ‘yes instance’ of Π′ then OPT(Π, I) ≤ f(I)

• If I ′ is a ‘no instance’ of Π′ then OPT(Π, I) > α(|I|) · f(I)

Approximation Algorithms – p. 36/43

Gap-introducing reductions (ii)

Theorem: If Π′ is NP-complete then Π cannot be approximated
with a factor α

Proof: If Π had an approximation algorithm of factor α then
SOL ≤ α · OPT. So,

• I ′ is a ‘yes instance’ of Π′ ⇒ SOL ≤ α · OPT(Π, I) ≤ α · f(I)

• I ′ is a ‘no instance’ of Π′ ⇒ SOL > OPT(Π, I) > α(|I|) · f(I)

Then by using the approximation algorithm for Pi we could be
able to determine in polynomial time whether the instance I ′ is
‘yes’ or ‘no’.

Since Pi is NP-complete, this would imply P = NP

Approximation Algorithms – p. 37/43

Gap-preserving reductions (i)

Suppose that Π′ is a minimization problem and Π a minimization
(similar for other cases).
A reduction h from Π′ to Π is called gap-preserving if:

1. Transforms (in polynomial time) any instance I ′ of Π′ to an
instance I = h(I ′) of Π

2. There are functions f ,f ′,α,β s.t.
• OPT(Π′, I ′) ≤ f ′(I ′)⇒ OPT(Π, I) ≤ f(I)

• OPT(Π′, I ′) > β(|I ′|) · f ′(I ′) ⇒ OPT(Π, I) > α(|I|) · f(I)

Approximation Algorithms – p. 38/43

Gap-preserving reductions (ii)

Theorem: If Π′ is non-approximable with a factor β then Π
cannot be approximated with a factor α unless P = NP

Proof: If Π had an approximation algorithm of factor α then
SOL ≥ α · OPT. So,

• OPT(Π′, I ′) ≤ f ′(I ′) ⇒ SOL ≤ α · OPT(Π, I) ≤ α · f(I)

• OPT(Π′, I ′) > β(|I ′|)f ′(I ′) ⇒ SOL > OPT(Π, I) > α(|I|) · f(I)

But Pi′ cannot be approximated with a factor β means that there
is an NP-complete decision problem Pi′′ and a gap-introducing
reduction from Pi′′ to Pi′ s.t.

• I ′′ is a ‘yes instance’ of Π′′ ⇒ OPT(Π′, I ′) ≤ f ′′(I ′)

• I ′′ is a ‘no instance’ of Π′′ ⇒ OPT(Π′, I ′) > β(|I ′|) · f ′′(I ′)

Thus, by running the algorithm for Π we could decide Π′′. This
implies P = NP

Approximation Algorithms – p. 39/43

The Traveling Salesman Problem

Definition: Given a complete graph Kn(V, E) and a weight
function w : E → Q find a tour, i.e. a permutation of the vertices,
that has minimum total weight.

• The TSP problem is NP-hard
• TSP is non-approximable with a factor α(n) polynomial in n,

via a gap-introducing reduction from Hamilton Cycle.

Definition: Given a graph G(V, E) a Hamilton Cycle is a cycle
that uses every vertex only ones.

• To determine whether G has a Hamilton Cycle or not is
NP-complete.

Approximation Algorithms – p. 40/43

TSP is non-approximable (i)

Reduction: G(V, E), |V | = n, is an instance of Hamilton Cycle.
The instance of TSP will be Kn with a weight function w,
w(e) = 1 if e ∈ E else w(e) = n + 2. Then

• If G has a Hamilton Cycle then OPT(TSP) = n

• If I ′ is a ‘no instance’ of Π′ then OPT(TSP) > 2n

1

1

1

1

2

n

1

1 1

1

+

1

2

n
+

2

n
+

2

n
+

Approximation Algorithms – p. 41/43

TSP is non-approximable (ii)

 TSP is APX-hard, i.e there exist a constant α (in the
example 2) that TSP cannot be approximated with factor α,
unless P = NP

 Bonus!!! In the reduction if we set w(e) = α(n) · n, e 6∈ E
then we cannot have an α(n) approximation factor for TSP.
Thus TSP is non-approximable

Approximation Algorithms – p. 42/43

THE END!!!

Approximation Algorithms – p. 43/43

	Outline
	huge 1. Introduction
	Optimization Problems
	The PO-class (i)
	The PO-class (ii)
	The NPO-class
	Notation
	Approximability
	Approximation Schemes
	Approximation World
	Representatives
	huge 2. Vertex Cover
	The (Cardinality)
Vertex Cover Problem
	Lower Bounding
	Matchings
	A 2-Approximation Algorithm for Vertex Cover
	Can we do better?
	Tight Examples
	Tight Example for the matching algorithm
	Other kind of examples
	Using the matching lower bound
	Other lower bounds for Vertex Cover
	huge 3. Knapsack
	Pseudo-polynomial time algorithms
	Strong NP-hardness
	The existence of FPTAS
	The Knapsack Problem (i)
	The Knapsack Problem (ii)
	A pseudo-polynomial time algorithm for knapsack (i)
	A pseudo-polynomial time algorithm for knapsack (ii)
	An FPTAS for Knapsack
	Analysis
	huge 4. TSP
	Hardness of Approximation
	Gap-introducing reductions (i)
	Gap-introducing reductions (ii)
	Gap-preserving reductions (i)
	Gap-preserving reductions (ii)
	The Traveling Salesman Problem
	TSP is non-approximable (i)
	TSP is non-approximable (ii)

