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1. Introduction
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Optimization Problems

• Optimization Problem: Every instance of the problem
corresponds to some feasible solutions each of them having
a value via an Objective Function.

• We seek for an Optimal Solution i.e. a feasible solution that
has an optimal value.

• Optimization problems can be either Maximization or
Minimization

• Example: The Vertex Cover Problem
◦ Min or Max: Mimimization
◦ Instance: A graph
◦ Feasible Solutions: Every Vertex Cover
◦ Objective Function: The cardinality | ⋆ | function
◦ Optimal Solution: A Vertex Cover of minimum cardinality
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The PO-class (i)

Consider a minimization problem:
Given an instance of size n try to find the minimum possible

feasible solution.
Then the corresponding decision problem would be:

Given an instance of size n and a fixed k (in binary) is there
any feasible solution of value less or equal to k?

 If the decision version is polynomially solvable on n and log k
then we can construct a polynomial time algorithm for the
optimization version
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The PO-class (ii)

• Determine l, k = 2l such that there is a feasible solution of
value less or equal to 2l but there is not a feasible solution
of value less or equal to 2l−1, by running log k times the
polynomial time algorithm for the decision version.

• Then do binary search to find the exact value of k (log k
runs of the decision version algorithm).

This implies a polynomial time algorithm on the size of the input.
We call the class of problems that have a polynomial time
solvable decision version PO class (PO stands for
P-Optimization).
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The NPO-class

Problems in PO are polynomial time solvable. Thus we turn our
attention to NP-Optimization Problems (i.e. the corresponding
decision problem is in NP) and especially in NP-hard problems.
Unless P=NP we cannot have a polynomial time algorithm to
compute the optimal value for general instance of an NP-hard
problem.

• Solve the problem exactly on limited instances.
• Find polynomial time approximation algorithms

Approximation Algorithms – p. 7/43



Notation

• Π: Problem
• I: Instance
• SOLA(Π, I): The solution we obtain for the instance I of the

problem Π using algorithm A.
• OPT(Π, I): The optimal solution for the instance I of the

problem Π.

Note: We usually omit Π, I and A from the above notation.
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Approximability

• An algorithm A for a minimization problem Π achieves a ρA

approximation factor, (ρA : N → Q+) if for every instance I
of size |I| = n:

SOLA(I)

OPT(I)
≤ ρA(n)

• An algorithm A for a maximization problem Π achieves a ρA

approximation factor, (ρA : N → Q+) if for every instance I
of size |I| = n:

SOLA(I)

OPT(I)
≥ ρA(n)

 An approximation algorithm of factor ρ guarantees that the
solution that the algorithm computes cannot be worse than ρ
times the optimal solution.
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Approximation Schemes

Informally: We can have as good approximation factor as we
want trading off time.

Formally:
• A is an Approximation Scheme (AS) for problem Π if on

input (I, ε), where I an instance and ε > 0 an error
parameter:
◦ SOLA(I, ε) ≤ (1 + ε) · OPT(I), for minimization problem
◦ SOLA(I, ε) ≥ (1 − ε) · OPT(I), for maximization problem

• A is a PTAS (Polynomial Time AS) if for every fixed ε > 0 it
runs in polynomial time in the size of I.

• A is an FPTAS (Fully PTAS) if for every fixed ε > 0 it runs in
polynomial time in the size of I and in 1/ε.
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Approximation World

Depending on the approximation factor we have several classes
of approximation:

N P O

l o g n

A P X

P T A S

F P T A S

P O

• logn: ρ(n) = O(log n)

• APX: ρ(n) = ρ (constant factor approximation)
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Representatives

• Non-approximable: Traveling Salesman Problem
• logn: Set Cover

• APX: Ferry Cover
⊙

⌣̈

• PTAS: Makespan Scheduling
• FPTAS: Knapsack
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2. Vertex Cover
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The (Cardinality) Vertex Cover Problem

Definition: Given a graph G(V, E) find a minimum cardinality
Vertex Cover, i.e. a set V ′ ⊆ V such that every edge has at least
one endpoint in V ′.

• A trivial feasible solution would be the set V

• Finding a minimum cardinality Vertex Cover is NP-hard
(reduction from 3-SAT)

• An approximation algorithm of factor 2 will be presented
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Lower Bounding

A general strategy for obtaining a ρ-approximation algorithm (for
a minimization problem) is the following:

• Find a lower bound l of the optimal solution (l ≤ OPT)
• Find a factor ρ such that SOL = ρ · l

 The previous scheme implies SOL ≤ ρ · OPT
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Matchings

• Definition: Given a graph G(V, E) a matching is a subset of
the edges M ⊆ E such that no two edges in M share an
endpoint.

• Maximal Matching: A matching that no more edges can be
added.

• Maximum Matching: A maximum cardinality matching.

 Maximal Matching is solved in polynomial time with the
greedy algorithm
 Maximum Matching is also solved in polynomial time via a
reduction to max-flow
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A 2-Approximation Algorithm for Vertex Cover

• The Algorithm: Find a maximal matching M of the graph
and output the set V ′ of matched vertices

• Correctness:
◦ Edges belonging in M are all covered by V ′

◦ Since M is a maximal matching, any other edge
e ∈ E \ M will share at least one endpoint v with some
e′ ∈ M . So v is in V ′ and guards e.

• Analysis:
◦ Any vertex cover should pick at least one endpoint of

each matched edge → |M | ≤ OPT

◦ |V ′| = 2|M |

Thus SOL = |V ′| = 2|M | ≤ 2OPT ⇒ SOL ≤ 2OPT

 Vertex Cover is in APX
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Can we do better?

Questions
• Can the approximation guarantee be improved by a better

analysis?
• Can an approximation algorithm with a better guarantee be

designed using the same lower bounding scheme?
• Is there some other lower bounding methods that can lead

to an improved approximation algorithm?

Answers
• Tight Examples
• Other kind of examples
• This is not so immediate...
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Tight Examples

• A better analysis might imply an l′ s.t. l < l′ ≤ OPT. Then
there would be a ρ′ < ρ s.t. ρ · l = ρ′ · l′, so

SOL = ρ · l = ρ′ · l′ ≤ ρ′OPT

Thus we could obtain a better approximation factor ρ′ < ρ.
• Definition: An infinite family of instances in which l = OPT is

called Tight Example for the ρ-approximation algorithm.

• If l = OPT then there is no l′ > l s.t l′ ≤ OPT.
 So we can’t find a better factor by better analysis
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Tight Example for the matching algorithm

• The infinite family Kn,n of the complete balanced bipartite
graphs is a tight example.

• |M | = n = OPT. So the solution returned is 2 times the
optimal solution.
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Other kind of examples

• Using the same lower bound l ≤ OPT we might find a better
algorithm with ρ′ < ρ that computes SOL = ρ′ · l. This would
imply a better ρ′ approximation algorithm.

• An infinite family where l = 1
ρ

OPT implies that

SOL = l · ρ′ = 1
ρ
ρ′OPT < OPT (contradiction).

 Thus it is impossible to find another algorithm with better
approximation factor using the lower bound l ≤ OPT
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Using the matching lower bound

• The infinite family K2n+1 of the complete bipartite graphs
with odd number of vertices have an optimal vertex of
cardinality 2n

• A maximal matching could be |M | = n = 1
2OPT. So the

solution returned is the optimal solution.
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Other lower bounds for Vertex Cover

• This is still an open research area.
• Best known result for the approximation factor (until 2004) is

2 − Θ( 1√
log n

) (due to George Karakostas)

• Uses Linear Programming.
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3. Knapsack
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Pseudo-polynomial time algorithms

• An instance I of any problem Π consists of objects (sets,
graphs,. . . ) and numbers.

• The size of I (|I|) is the number of bits needed to write the
instance I.

• Numbers in I are written in binary
• Let Iu be the instance I where all numbers are written in

unary
• Definition: A pseudo-polynomial time algorithm is an

algorithm running in polynomial time in |Iu|

• Pseudo-polynomial time algorithms can be obtained using
Dynamic Programming
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Strong NP-hardness

• Definition: A problem is called strongly NP-hard if any
problem in NP can be polynomially reduced to it and
numbers in the reduced instance are written in unary

• Informally: A strongly NP-hard problem remains NP-hard
even if the input numbers are less than some polynomial of
the size of the objects.

 Strongly NP-hard problems cannot admit a
pseudo-polynomial time algorithm, assuming P 6= NP

(else we could solve the reduced instance in polynomial time,
thus we could solve every problem in NP in polynomial time.
That would imply P = NP )
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The existence of FPTAS

Theorem: For a minimization problem Π if ∀ instance I,
• OPT is strictly bounded by a polynomial of |Iu| and
• the objective function is integer valued

then Π admits an FPTAS ⇒ Π admits a pseudo-polynomial time
algorithm
 A strongly NP-hard problem (under the previous
assumptions) cannot admit an FPTAS unless P = NP
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The Knapsack Problem (i)

• Definition: The discrete version is given a set of n items
X = {x1, . . . , xn} where a profit : X → N and a
weight : X → N function are provided and a “knapsack” of
total capacity B ∈ N, find a subset Y ⊆ X whose total size
is bounded by B and maximizes the total profit.

• Definition: The continuous version is given a set of n
continuous items X = {x1, . . . , xn} where profit and weight
function are provided and a “knapsack” of total capacity
B ∈ N, find a sequence {w1, . . . , wn} of portions where
∑n

i=1 wi = B that maximizes the total profit.
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The Knapsack Problem (ii)

• The greedy algorithm (sort the objects by decreasing ratio
of profit to weight) solves in polynomial time the continuous
version

• The greedy algorithm can be made to perform arbitrarily
bad for the discrete version.

• Discrete Knapsack is NP-hard
• Pseudo-polynomial time and FPTAS algorithms will be

presented for the discrete version.
• For now on we focus on discrete knapsack and call it

“knapsack”
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A pseudo-polynomial time algorithm for knapsack (i)

• Let P be the profit of the most profitable object
• nP is a trivial upper bound on the total profit
• For i ∈ {1, . . . , n} and p ∈ {1, . . . , nP} let S(i, p) denote a

subset of {x1, . . . , xi} whose total profit is exactly p and its
total weight is minimized

• Let W (i, p) denote the weight of S(i, p) (∞ if no such a set
exists)
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A pseudo-polynomial time algorithm for knapsack (ii)

The following inductive relation computes all values W (i, p) in
O(n2P )

• W (1, p) is weight(x1) if p = profit(x1), ∞ else

• W (i + 1, p) =
{

W (i, p), profit(xi+1) > p

min{W (i, p), weight(xi+1) + W (i, p − profit(xi+1))}, else

The optimal solution of the problem is max{p|W (n, p) ≤ B}

 The optimal solution can be computed in polynomial time on n
and P
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An FPTAS for Knapsack

• Idea: The previous algorithm could be a polynomial time
algorithm if P was bounded by a polynomial of n

• Ignore a number of least significant bits of the profits of the
objects

• Modified profits profit′ should now be numbers bounded by
a polynomial of n and 1

ε
(ε is the error parameter)

• The algorithm:

1. Given ε > 0 define K = εP
n

2. Set new profit function profit′, profit′(xi) = ⌊profit(xi)
K

⌋

3. Run the pseudo-polynomial time algorithm described
previously and output the result
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Analysis

Theorem: The previous algorithm is an FPTAS

1. SOL ≥ (1 − ε)OPT

2. Runs in polynomial time in n and 1
ε

Proof:

1. Let S and O denote the output set and the optimal set

• profit′(xi) = ⌊profit(xi)
K

⌋ ⇒

profit(xi) ≥ K · profit′(xi) ≥ profit(xi) − K

• K = εP
n

• profit′(S) ≥ profit′(O)
• OPT ≥ P

Thus, SOL = profit(S) ≥ K · profit′(S) ≥ K · profit′(O) ≥
profit(O) − nK = OPT − εP ≥ (1 − ε) · OPT

2. The algorithm’s running time is O(n2⌊ P
K
⌋) = O(n2⌊n

ε
⌋)
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4. TSP
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Hardness of Approximation

To show that an optimization problem Π is hard to approximate
we can use

• A Gap-introducing reduction: Reduces an NP-complete
decision problem Π′ to Π

• A Gap-preserving reduction: Reduces a hard to
approximate optimization problem Π′ to Π
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Gap-introducing reductions (i)

Suppose that Π′ is a decision problem and Π a minimization
problem (similar for maximization).
A reduction h from Π′ to Π is called gap-introducing if:

1. Transforms (in polynomial time) any instance I ′ of Π′ to an
instance I = h(I ′) of Π

2. There are functions f and α s.t.
• If I ′ is a ‘yes instance’ of Π′ then OPT(Π, I) ≤ f(I)

• If I ′ is a ‘no instance’ of Π′ then OPT(Π, I) > α(|I|) · f(I)
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Gap-introducing reductions (ii)

Theorem: If Π′ is NP-complete then Π cannot be approximated
with a factor α

Proof: If Π had an approximation algorithm of factor α then
SOL ≤ α · OPT. So,

• I ′ is a ‘yes instance’ of Π′ ⇒ SOL ≤ α · OPT(Π, I) ≤ α · f(I)

• I ′ is a ‘no instance’ of Π′ ⇒ SOL > OPT(Π, I) > α(|I|) · f(I)

Then by using the approximation algorithm for Pi we could be
able to determine in polynomial time whether the instance I ′ is
‘yes’ or ‘no’.

Since Pi is NP-complete, this would imply P = NP
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Gap-preserving reductions (i)

Suppose that Π′ is a minimization problem and Π a minimization
(similar for other cases).
A reduction h from Π′ to Π is called gap-preserving if:

1. Transforms (in polynomial time) any instance I ′ of Π′ to an
instance I = h(I ′) of Π

2. There are functions f ,f ′,α,β s.t.
• OPT(Π′, I ′) ≤ f ′(I ′)⇒ OPT(Π, I) ≤ f(I)

• OPT(Π′, I ′) > β(|I ′|) · f ′(I ′) ⇒ OPT(Π, I) > α(|I|) · f(I)
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Gap-preserving reductions (ii)

Theorem: If Π′ is non-approximable with a factor β then Π
cannot be approximated with a factor α unless P = NP

Proof: If Π had an approximation algorithm of factor α then
SOL ≥ α · OPT. So,

• OPT(Π′, I ′) ≤ f ′(I ′) ⇒ SOL ≤ α · OPT(Π, I) ≤ α · f(I)

• OPT(Π′, I ′) > β(|I ′|)f ′(I ′) ⇒ SOL > OPT(Π, I) > α(|I|) · f(I)

But Pi′ cannot be approximated with a factor β means that there
is an NP-complete decision problem Pi′′ and a gap-introducing
reduction from Pi′′ to Pi′ s.t.

• I ′′ is a ‘yes instance’ of Π′′ ⇒ OPT(Π′, I ′) ≤ f ′′(I ′)

• I ′′ is a ‘no instance’ of Π′′ ⇒ OPT(Π′, I ′) > β(|I ′|) · f ′′(I ′)

Thus, by running the algorithm for Π we could decide Π′′. This
implies P = NP
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The Traveling Salesman Problem

Definition: Given a complete graph Kn(V, E) and a weight
function w : E → Q find a tour, i.e. a permutation of the vertices,
that has minimum total weight.

• The TSP problem is NP-hard
• TSP is non-approximable with a factor α(n) polynomial in n,

via a gap-introducing reduction from Hamilton Cycle.

Definition: Given a graph G(V, E) a Hamilton Cycle is a cycle
that uses every vertex only ones.

• To determine whether G has a Hamilton Cycle or not is
NP-complete.
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TSP is non-approximable (i)

Reduction: G(V, E), |V | = n, is an instance of Hamilton Cycle.
The instance of TSP will be Kn with a weight function w,
w(e) = 1 if e ∈ E else w(e) = n + 2. Then

• If G has a Hamilton Cycle then OPT(TSP) = n

• If I ′ is a ‘no instance’ of Π′ then OPT(TSP) > 2n
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TSP is non-approximable (ii)

 TSP is APX-hard, i.e there exist a constant α (in the
example 2) that TSP cannot be approximated with factor α,
unless P = NP

 Bonus!!! In the reduction if we set w(e) = α(n) · n, e 6∈ E
then we cannot have an α(n) approximation factor for TSP.
Thus TSP is non-approximable
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THE END!!!
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