Computationally Efficient Truthful Mechanisms

Markos Epitropou

Mechanism Design @ NTUA

May 23, 2013

Outline

Dominant-Strategy Mechanisms

2 Characterizations of Truthful Mechanisms

Combinatorial Auctions

4 Job Scheduling

Outline

Dominant-Strategy Mechanisms

2 Characterizations of Truthful Mechanisms

Combinatorial Auctions

4 Job Scheduling

Dominant-Strategy Implementable

Truthful Mechanism

A mechanism (f, p_1, \ldots, p_n) is called truthful if for every player i, every $v_1 \in V_1, \ldots, v_n \in V_n$ and every $v_i' \in V_i$, if we denote $a = f(v_i, v_{-i})$ and $b = f(v_i', v_{-i})$, then $v_i(a) - p_i(v_i, v_{-i}) \ge v_i(b) - p_i(v_i', v_{-i})$.

Dominant-Strategy Implementable

Revelation Principle

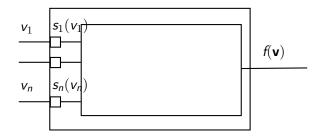
If there exists an arbitrary mechanism that implements f in dominant strategies, then there exists an incentive compatible mechanism that implements f. The payments of the players in the incentive compatible mechanism are identical to those, obtained at equilibrium, of the original mechanism.



Dominant-Strategy Implementable

Revelation Principle

If there exists an arbitrary mechanism that implements f in dominant strategies, then there exists an incentive compatible mechanism that implements f. The payments of the players in the incentive compatible mechanism are identical to those, obtained at equilibrium, of the original mechanism.



Payment Functions

The payment does not depend on v_i , but only on the alternative chosen $f(v_i, v_{-i})$.

$$p_i = p_i(v_{-i}, a)$$

Proof.

$$f(v_i, v_{-i}) = f(v_i, v_{-i})$$

if $p_i(v_i, v_{-i}) > p_i(v_i', v_{-i})$ then a player with type v_i declares v_i' .

Weighted VCG

Affine Maximizers

A social choice function f is called an affine maximizer if for some subrange $A' \subset A$, for some player weights $w_1, \ldots, w_n \in \mathbb{R}^+$ and for some outcome weights $c_a \in \mathbb{R}$ for every $a \in A'$, we have that $f(v_1, \ldots, v_n) \in \arg\max_{a \in A'} (c_a + \sum_i w_i v_i(a))$.

VCG

Let f be an affine maximizer. Define for every i, $p_i(v_1,\ldots,v_n)=h_i(v_{-i})-\sum\limits_{j\neq i}\frac{w_j}{w_i}v_j(a)-\frac{c_a}{w_i}$, where h_i is an arbitrary function.

Outline

Dominant-Strategy Mechanisms

Characterizations of Truthful Mechanisms

Combinatorial Auctions

4 Job Scheduling

A Local Characterization

WMON

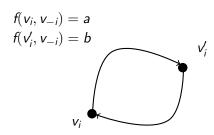
A social choice function f satisfies Weak Monotonicity (WMON) if for all i, all v_{-i} we have that $f(v_i, v_{-i}) = a \neq b = f(v_i', v_{-i})$ implies that

$$v_i'(b) - v_i(b) \ge v_i'(a) - v_i(a)$$

$IC \subset WMON$

If a mechanism (f, p_1, \dots, p_n) is incentive compatible, then f satisfies WMON.

A Local Characterization



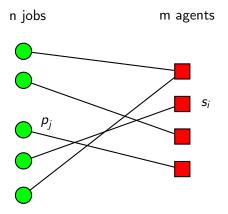
- v_i : $v_i(a) p_a \ge v_i(b) p_b \Rightarrow v_i(a) v_i(b) \ge p_a p_b$
- v_i : $v_i(a) p_a \le v_i(b) p_b \Rightarrow v_i(a) v_i(b) \le p_a p_b$

A Local Characterization

Convex Domains - WMON ⊂ IC

If all domains of preferences V_i are convex sets then for every social choice function that satisfies WMON there exists payment functions p_1, \ldots, p_n such that (f, p_1, \ldots, p_n) is incentive compatible.

Setting (Job Scheduling)



Setting (Job Scheduling)

- Agents' Types: $\{t_i = \frac{1}{s_i}\}$
- Mechanism's Input: $\{b_i\}$
- Mechanism's Output: $o(\mathbf{b})$
- Agent's Profit: $profit_i(t_i, \mathbf{b}) = p_i(\mathbf{b}) cost_i(t_i, o(\mathbf{b}))$
- Agent's Cost: $cost_i(t_i, o) = t_i w_i(o) = \frac{l_i(o)}{s_i}$

Truthful Mechanism (o, \mathbf{p})

For every agent i,

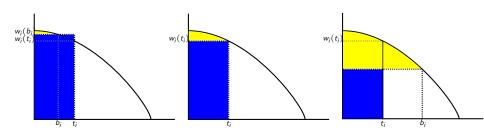
$$profit_i(t_i, (\mathbf{b}_{-i}, t_i)) \ge profit_i(t_i, (\mathbf{b}_{-i}, b_i))$$

• $WMON \Rightarrow w'(b_i) \leq 0$ (decreasing load curve)

•
$$p_i(b_i) = h_i(b_{-i}) + b_i w_i(b_i) - \int_0^{b_i} w_i(u) du$$

 $p_i(b_i) = b_i w_i(b_i) + \int_{b_i}^{\infty} w_i(u) du$

$$p_{i}(b_{i}) = h_{i}(b_{-i}) + b_{i}w_{i}(b_{i}) - \int_{0}^{b_{i}} w_{i}(u)du$$



Arbitrary Valuations

Roberts Theorem

If $|A| \geq 3$, f is onto A, $V_i = \mathbb{R}^A$ for every i, and (f, p_1, \dots, p_n) is incentive compatible then f is an affine maximizer.

Outline

Dominant-Strategy Mechanisms

2 Characterizations of Truthful Mechanisms

Combinatorial Auctions

4 Job Scheduling

Notation

- n players
- m items
- Outcomes: All possible S_1, \ldots, S_n
- $\mathbf{v}_i(\emptyset) = 0$
- $S \subseteq T \Rightarrow v_i(S) \leq v_i(T)$

Linear Program Relaxation

$$\begin{aligned} \max \sum_{i,S \neq \emptyset} v_i(S) x_{i,S} \\ \text{subject to } \sum_{S \neq \emptyset} x_{i,S} \leq 1 \qquad \text{, for each player i} \\ \sum_{i} \sum_{S:j \in S} x_{i,S} \leq 1 \text{, for each item j} \\ x_{i,S} \geq 0 \qquad \text{, for each i,S} \end{aligned}$$

Bidding Languages, Queries

Value Query: The auctioneer presents a bundle S, the bidder reports his value v(S) for this bundle.

Demand Query: The auctioneer presents a vector of item prices p_1, \ldots, p_m ; the bidder reports a demand bundle under these prices, i.e. some set S that maximizes $v(S) - \sum_{i \in S} p_i$.

Bidding Languages, Queries

Theorem

The Linear Program Relaxation can be solved in polynomial time using only demand queries with item prices.

Dual Linear Program

$$\begin{aligned} \min \sum_i u_i + \sum_j p_j \\ \text{subject to } u_i + \sum_{j \in S} p_j \geq v_i(S), \text{ for i, S} \\ u_i \geq 0 &, \text{ for each player i} \\ p_j \geq 0 &, \text{ for each item j} \end{aligned}$$

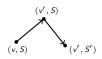
Valuations

A valuation v is called single minded if there exists a bundle of items S^* and a value $v^* \in \mathbb{R}^+$ such that $v(S) = v^*$ for all $S \supseteq S^*$, and v(S) = 0 for all other S. A single-minded bid is the pair (S^*, v^*) .

Truthful Mechanism

A mechanism for single-minded bidders in which losers pay 0 is incentive compatible if and only if it satisfies the following two conditions:

- **Monotonicity**: A bidder who wins with bid (S_i^*, v_i^*) keeps winning for any $v_i' > v_i^*$ and for any $S_i' \subset S_i^*$.
- **2 Critical Payment**: A bidder who wins pays the minimum value needed for winning: the infimum of all values v_i such that (S_i, v_j) still wins.



The Greedy Algorithm A_G

Initialization:

$$\bullet \ \frac{v_1}{\sqrt{|S_1|}} \ge \ldots \ge \frac{v_n}{\sqrt{|S_n|}}$$

For $\mathbf{i} = \mathbf{1}..\mathbf{n}$ do: if $S_i \cap (\bigcup_{j \in W}) = \emptyset$ then $W \leftarrow W \cup \{i\}$

Output:

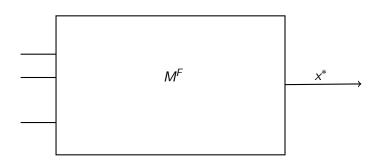
- Allocation: W
- Payments: if $i \in W$ then $p_i = \frac{v_j}{\sqrt{|S_j|}} \cdot \sqrt{|S_i|}$, where j the smallest index such that $S_i \cap S_i \neq \emptyset$.

- Optimal Allocation: OPT
- Winners of A_G : W
- $OPT_i = \{j \in OPT, j \geq i | S_i \cap S_j \neq \emptyset\}$

$$SW_{\mathcal{A}_G} \geq rac{1}{\sqrt{m}}SW_{OPT}$$
 $(\sqrt{m}$ -approximation)

- $OPT \subseteq \bigcup_{i \in \mathcal{W}} OPT_i$
- $\sum_{i \in W} v_i \ge \frac{1}{\sqrt{m}} \sum_{i \in W} \sum_{j \in OPT_i} v_j \ge \frac{1}{\sqrt{m}} \sum_{i \in OPT} v_i$

Randomized Mechanisms

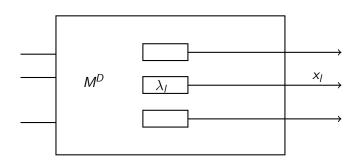


Truthful in Expectation

A randomized mechanism (f, p) is truthful in expectation if for any player i, any $v_{-i} \in V_{-i}$ and any $v_i, v_i \in V_i$,

$$\mathbb{E}[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i})] \ge \mathbb{E}[v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i})]$$

Randomized Mechanisms



Truthful in Expectation

A randomized mechanism (f, p) is truthful in expectation if for any player i, any $v_{-i} \in V_{-i}$ and any $v_i, v_i \in V_i$,

$$\mathbb{E}[v_i(f(v_i, v_{-i})) - p_i(v_i, v_{-i})] \ge \mathbb{E}[v_i(f(v_i', v_{-i})) - p_i(v_i', v_{-i})]$$

Randomized Mechanisms

The Truthful α -approximation support mechanism

- Use VCG to get a truthful fractional mechanism M^F that outputs allocation $f^F(v) = x^*(v)$. the optimal solution to the LPR, and prices $p^F(v)$.
- ② Use \mathcal{A} to obtain the convex decomposition $\frac{x^*}{\alpha} = \sum_{l \in \mathcal{I}} \lambda_l x_l$ with only polynomially many λ_l .
- **3** Return the support mechanism $M^D = (f^D, p^D)$ with $f^D(v) = \{\lambda_l\}_{l \in \mathcal{I}}$ and $p^D(v) = \frac{p^F(v)}{\alpha}$.

Outline

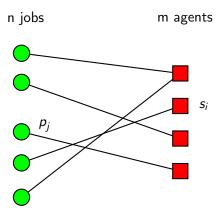
Dominant-Strategy Mechanisms

2 Characterizations of Truthful Mechanisms

Combinatorial Auctions

4 Job Scheduling

Setting (Job Scheduling)



Setting (Job Scheduling)

- Agents' Types: $\{t_i = \frac{1}{s_i}\}$
- Mechanism's Input: $\{b_i\}$
- Mechanism's Output: $o(\mathbf{b})$
- Agent's Profit: $profit_i(t_i, \mathbf{b}) = p_i(\mathbf{b}) cost_i(t_i, o(\mathbf{b}))$
- Agent's Cost: $cost_i(t_i, o) = t_i w_i(o) = \frac{l_i(o)}{s_i}$

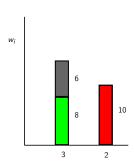
•
$$p_1 \geq \ldots \geq p_n$$

•
$$s_1 > ... > s_m$$

$$T_j = \min_{i} \max \left\{ \frac{p_j}{s_i}, \frac{\sum\limits_{k=1}^{j} p_k}{\sum\limits_{l=1}^{j} s_l} \right\}$$

•
$$T_{LB} = \max_{j} T_{j}$$

$$T_{OPT} \geq T_{LB}$$



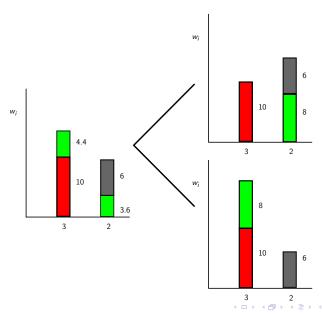
The Fractional Algorithm A_F

② Assign jobs $1, \ldots, j_1 - 1$ and a fraction of j_1 to machine 1 $(w_1 = T_{LB} \cdot s_1)$

Continue recursively...

Feasibility and Truthfulness

- 1. All jobs are assigned and 2. $\frac{p_j}{s_{i(j)}} \leq T_{LB}$.
- $\mathcal{A}_{\mathcal{F}}$ is monotone.



Randomized Rounding

- $\textbf{ 0} \ \, \mathsf{Choose} \,\, \alpha \in [0,1] \,\, \mathsf{uniformly} \,\,$
- ② if (fraction in i) $\geq \alpha$, then assign to i, otherwise to i+1

A_F + randomized rounding

 A_F + randomized rounding algorithm is truthful in expectation, and obtains a 2-approximation to the optimal makespan in polynomial-time.

Proof.

- Expected Load remains the same.
- Additional Cost $\leq a \cdot p_i + (1 a) \cdot p_k \leq T_{LB}$

