Notes in Social Choice

Dimitris Fotakis

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE

Social Choice and Voting

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Social Choice and Voting

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting

- Set A, |A| = m, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social Choice and Voting

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).

Formal Setting

- Set A, |A| = m, of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Social Choice Theory

- Mathematical theory dealing with aggregation of preferences.
- Founded by Condorcet, Borda (1700's) and Dodgson (1800's).
- Axiomatic framework and impossibility result by Arrow (1951).
- Collective decision making, by **voting**, over anything:
 - Political representatives, award nominees, contest winners, allocation of tasks/resources, joint plans, meetings, food, ...
 - Web-page ranking, preferences in multiagent systems.

Formal Setting

- Set A, |A| = m, of possible alternatives (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**, or **voting rule**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0).

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: Pink \succ Red \succ Green

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: $Pink \succ Red \succ Green$

With **plurality** voting (1, 0, 0): Green $(12) \succ \text{Red}(10) \succ \text{Pink}(3)$

Preferences of the founders about the **colors** of the local club:

- 12 boys: Green \succ Red \succ Pink
- 10 boys: Red \succ Green \succ Pink
- 3 girls: Pink \succ Red \succ Green

Voting rule allocating (2, 1, 0). Outcome should have been Red $(35) \succ$ Green $(34) \succ$ Pink(6)Instead, the outcome was Pink $(28) \succ$ Green $(24) \succ$ Red(23)

- 12 boys voted for: Green \succ Pink \succ Red
- 10 boys voted for: Red \succ Pink \succ Green
- 3 girls voted for: $Pink \succ Red \succ Green$

With **plurality** voting (1,0,0): Green $(12) \succ \text{Red}(10) \succ \text{Pink}(3)$ Probably it would have been $\text{Red}(13) \succ \text{Green}(12) \succ \text{Pink}(0)$

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by (1, 0, ..., 0).
 - Extensively used in elections of political representatives.

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by $(1, 0, \ldots, 0)$.
 - Extensively used in elections of political representatives.

Borda Count (1770): (m - 1, m - 2, ..., 1, 0)

"Intended only for honest men."

Positional Scoring Voting Rules

- Vector (*a*₁,..., *a_m*), *a*₁ ≥ ··· ≥ *a_m* ≥ 0, of **points** allocated to each **position** in the preference list.
- Winner is the alternative getting most points.
- **Plurality** is defined by $(1, 0, \ldots, 0)$.
 - Extensively used in elections of political representatives.

Borda Count (1770): (m - 1, m - 2, ..., 1, 0)

"Intended only for honest men."

Condorcet Winner

• Winner is the alternative beating every other alternative in pairwise election.

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)
- Condorcet criterion : select the Condorcet winner, if exists.
 - Plurality satisfies the Condorcet criterion? Borda count?

- Winner is the alternative beating every other alternative in pairwise election.
 - 12 boys: Green ≻ Red ≻ Pink
 10 boys: Red ≻ Green ≻ Pink
 3 girls: Pink ≻ Red ≻ Green
 - (Green, Red): (12, 13), (Green, Pink): (22, 3), (Red, Pink): (22, 3)
- Condorcet paradox: Condorcet winner may not exist.
 - $a \succ b \succ c$, $b \succ c \succ a$, $c \succ a \succ b$
 - (*a*, *b*): (2, 1), (*a*, *c*): (1, 2), (*b*, *c*): (2, 1)
- Condorcet criterion : select the Condorcet winner, if exists.
 - Plurality satisfies the Condorcet criterion? Borda count?
- "Approximation" of the Condorcet winner: Dodgson (NP-hard to approximate!), Copeland, MiniMax, ...

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, ..., n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of **agents** (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous: If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

Social Choice

Setting

- Set *A* of possible **alternatives** (candidates).
- Set $N = \{1, \ldots, n\}$ of agents (voters).
- \forall agent *i* has a (private) **linear order** $\succ_i \in L$ over alternatives *A*.

Social choice function (or **mechanism**) $F : L^n \to A$ mapping the agents' preferences to an alternative.

Desirable Properties of Social Choice Functions

- Onto: Range is A.
- Unanimous : If *a* is the top alternative in all \succ_1, \ldots, \succ_n , then

 $F(\succ_1,\ldots,\succ_n)=a$

• Not dictatorial: For each agent i, $\exists \succ_1, \ldots, \succ_n$:

 $F(\succ_1,\ldots,\succ_n) \neq \text{agent's } i \text{ top alternative}$

• **Strategyproof** or **truthful** : $\forall \succ_1, \ldots, \succ_n, \forall$ agent $i, \forall \succ'_i$,

 $F(\succ_1,\ldots,\succ_i,\ldots,\succ_n) \succ_i F(\succ_1,\ldots,\succ_i,\ldots,\succ_n)$

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems **computationally hard** to manipulate.

Gibbard-Satterthwaite Theorem (mid 70's)

Any **strategyproof** and **onto** social choice function on **more than 2** alternatives is **dictatorial**.

Escape Routes

- Randomization
- Monetary payments
- Voting systems **computationally hard** to manipulate.
- Restricted domain of preferences Approximation

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$

 $x_i^* \ge a > b \implies a \succ_i b$

Single Peaked Preferences

- One dimensional ordering of alternatives, e.g. A = [0, 1]
- Each agent *i* has a **single peak** $x_i^* \in A$ such that for all $a, b \in A$:

$$b < a \le x_i^* \implies a \succ_i b$$
$$x_i^* > a > b \implies a \succ_i b$$

Median Voter Scheme [Moulin 80], [Sprum 91], [Barb Jackson 94]

A social choice function *F* on a single peaked preference domain is **strategyproof**, **onto**, and **anonymous** iff there exist $y_1, \ldots, y_{n-1} \in A$ such that for all (x_1^*, \ldots, x_n^*) ,

$$F(x_1^*,...,x_n^*) = median(x_1^*,...,x_n^*,y_1,...,y_{n-1})$$

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Select a Single Location on the Line

The median of (x_1, \ldots, x_n) is strategyproof (and Condorcet winner).

Generalized Median Voter Scheme [Moulin 80]

A social choice function *F* on single peaked preference domain [0, 1] is **strategyproof** and **onto** iff it is a **generalized median voter scheme** (GMVS), i.e., there exist 2^n thresholds $\{\alpha_S\}_{S \subseteq N}$ in [0, 1] such that:

- $\alpha_{\emptyset} = 0$ and $\alpha_N = 1$ (onto condition),
- $S \subseteq T \subseteq N$ implies $\alpha_S \leq \alpha_T$, and
- for all $(x_1^*, ..., x_n^*)$, $F(x_1^*, ..., x_n^*) = \max_{S \subset N} \min\{\alpha_S, x_i^* : i \in S\}$

