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Influence in Networks

Usually the underlying social network of two forms:
1. Amorphous population of individuals and effects in aggregate
> Poll

2. Network as a graph and individuals influenced by network
neighbors

» Discussions
Local effects instead of global:
1. Direct-benefit effects

» compatibility of technologies for operating systems
> less cost for cell phones

2. Indirect effects like informational effects

» their choices often provide indirect information of things they
know
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Cascading Behavior in Networks

A networked Coordination game

» Social network, modeled as graph:

» nodes are the people
» edges denote friendship between them

» Two products A and B that are competitive

For each edge:
> If both adopt A, each gets payoff a > 0
» If both adopt B, each gets payoff b > 0
» If they adopt different products, each gets payoff 0
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Cascading Behavior in Networks

Cascading Behavior and Viral Marketing

» Suppose p of your neighbors have adopted A and 1 — p B.

» Expected gain pda if you adopt A and (1 — p)db if you adopt
B

> If p> ;bb(: q), you prefer to adopt A.

> If a node has more than g neighbors who have adopted A, he
alters to A

Diffusion in Networks National Technical University of Athens



Modelling Diffusion in Networks
(o] lelele]

Cascading Behavior in Networks

Cascading Behavior and Viral Marketing

» Suppose p of your neighbors have adopted A and 1 — p B.
» Expected gain pda if you adopt A and (1 — p)db if you adopt
B

> If p> be(: q), you prefer to adopt A.

> If a node has more than g neighbors who have adopted A, he
alters to A
» Strategies for A to ameliorate its situation:
1. Increasing a (making an existing innovation more attractive

can generally increase its reach)
2. Convincing a small number of key people to switch from B to
A
» A small number of initial adopters essentially start a long fuse
that eventually spreads globally
> Great question: How to choose these key people?
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Cascades and Clusters

Suppose now everybody has adopted B and you switch some nodes
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Cascading Behavior in Networks

Cascades and Clusters

Suppose now everybody has adopted B and you switch some nodes
to A

» If a node has more than g neighbors who have adopted A, he
alters to A
» When does it stop?
» When nobody has more than g neighbors in A
» When will A have a complete cascade?

» When there exists a B-cluster with density 1 — g
» 1 — g of each cluster member's neighbors are in the cluster
» Hence, dense clusters are the only obstacles to cascades
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Cascading Behavior in Networks

Thresholds

Thresholds model the difference between learning for a product
and adopting it
» Possibly heterogeneous

» each node v different (a,, b,)
b,
> Qv = a,+b,

» blocking clusters: set of nodes where every node has 1 — q,
neighbors in the set

» Bridges between different connecting components not that
useful

» More interested in the extent to which a node has access to
easily infulenceable nodes
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Cascading Behavior in Networks

Nature of networks

Generally weak ties vs strong ties?
» Access to more information via weak ties

» Common knowledge via strong ties (very important for a
protest, for instance)
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Epidemics

From epidemic diseases to the diffusion of ideas

Contact networks model the ways in which a disease can spread:
» People are nodes
» Interactions are edges
» Danger of interaction is weight

» when two people meet and one is infected, given probability for
the disease to spread

Clear connection between diseases and diffusion of ideas in social
networks
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Epidemics

The SIR Epidemic Model

Each node in three potential stages
» Susceptible: Before the node has caught the disease, it is
susceptible to infection from its neighbors

» Infectious: Once the node has caught the disease, it has some
probability to infect each of its susceptible neighbors

» Probability p to influence (extension: different for each edge)
» Possibly t; steps
» Removed: After it has experienced full infectious period, it is
removed from consideration

Variation: SIS Epidemic Model
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The Problem

The Problem

Given a social network, find an initial influential set of k nodes
that maximize the (expected) number of eventual adopters

» Many models to address this problem.
» Difference on
> the way the influence is exerted
> usually some function f of the influence of its neighbors
> the way a node decides to adopt a product

» Cascade Models: subclass of epidemic models
> Threshold Models
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The Problem
Useful Properties

Supposing o(A) (expected) number of eventual adopters for
influential set A
1. Monotonicity: if A C B then o(A) < o(B)
» Addition of a node in the influential set does not decrease
(expected) number of eventual adopters
2. Submodularity: if A C B then
g(AUx) —o(A) > o(BUx) —o(B)
» Marginal gain of a new node less for bigger influential sets

» Greedy algorithm (pick the node that maximizes the marginal
gain of eventual adopters) has (1 — %)—approx for monotone
and submodular functions (Nemhauser)

» Generally difficult to find it exactly so emphasis on models
with these nice properties
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KKT Models

Linear Threshold Model

v

Each edge e some weight b,

v

Each node u some threshold 6, uniformally at random from
[0,1]
If ZWQAN(U) bw.u > 64, u adopts the product

v

NP-hard. Reduction from Vertex Cover.
Monotone and submodular. Idea of the proof:
» One edge e is considered live w.p. b,
All the other blocked
All edges blocked w.p. ¢ — > w € N(u)by 4
The set of all reachable paths is the eventual adopting nodes
Stochastically equivalent to the Linear Threshold Model

v

v

vV vy vy
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KKT Models

Independent Cascade Model

» When a node u becomes active, it has a single chance to
influence each neighbor w w.p. p,w

» Both this and the previous model are progressive models (no
colored node can become uncolored later)

» NP-hard.
» Reduction from Set Cover.
» 2 layers (sets and unions)
> pes=1iffeec S
» Can we have eventual influence of n+ k7
» Monotone and submodular. Idea of the proof:
» A biased coin p, for each edge to decide if it is /ive or not

> A non-negative linear combination of submodular functions is
itself submodular

Diffusion in Networks National Technical University of Athens



Influence Maximization Problem
[e]e] Jele]

KKT Models

Decreasing Cascade Model

» Sometimes the first influencers tend to have more impact on
us than the latter

» p(u,S) > py(u, T)for SC T
» Order-independence necessary

» NP-hard. Reduction from Vertex Cover

» Monotone and submodular
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KKT Models

Deterministic Thresholds

v

It is NP-hard to approximate anything with Q(n'~¢).

v

That's why, randomized thresholds

v

Same hardness even if the thresholds are majority thresholds

v

Reduction from Set Cover, similar to Independent Cascade
Model's
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KKT Models

Computation of Utility

v

Exact computation of the utility is #P-hard.

v

Reduction from Counting simple paths in a graph.

v

FPRAS for approximating it as well as we wish

v

Hence the approximation algorithm gives
(1- % — €)-approximation for the best response
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Models

Competitive Cascade Model

» Competitive Influence Maximization Problem:

» when m firms try to propagate their influence in a competitive
way

» Simple extension of Independent Cascade Model with multiple
firms

» Expected number of eventual adopters by last firm monotone
and submodular

» Approximation algorithm for last firm's best response
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Models

Weight-Proportional Competitive Linear Threshold Model

Progressive process, Red and Blue firm

Each edge e has a weight w,

Each node 6, chooses a threshold uniformally at random
Node adopts if total influence exerted is greate or equal to its
threshold

» It chooses the color, weight-proportionally to the influence it
takes from each

vV v.vyYy
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Models

Weight-Proportional Competitive Linear Threshold Model

Progressive process, Red and Blue firm

Each edge e has a weight w,

Each node 6, chooses a threshold uniformally at random
Node adopts if total influence exerted is greate or equal to its
threshold

» It chooses the color, weight-proportionally to the influence it
takes from each

vV v.vyYy

» Generally not monotone nor submodular
» The reason is that the first influencers have double effect
» When they exert influence at first, they take the node if they
overcome the threshold
» Unless this happens, they have second chances every time
more influence is exerted to the node, due to the
weight-proportional tie breaking rule
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Models

Separated-Threshold Model for Competing Technologies

» Here firms influences aren’t aggregated

» Each has its own influence and each node has two thresholds,
one for each

» When > /. 1 Wﬂw > 02 then w adopts A's product.

» If both thresholds are overpassed, some tie-breaking rule, i.e.
simple coinflip

> As expected, monotone

» Still not submodular: tie-breaking rule is to be blamed but
unless extreme assumptions, no tie-breaking rule makes it
submodular
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Models

Switching-selection Model: A general framework

> General framework of models
> There is a switching function, which decides whether a node
will adopt some product, according to the total influence
exerted to it
» And a selection function, which decides which product it will
adopt, given the influences exerted by each and given the fact
that the node has decided to buy
» Includes many models as special cases
» Offers an intuition about how domineering the initial
difference in budgets is (according to the nature of the
functions)
» Budget Multiplier
» Offers an intuition about how bad the equilibria can be
> Price of Anarchy
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