Diffusion in Networks

Thodoris Lykouris

National Technical University of Athens

June 20, 2013

Diffusion in Networks

National Technical University of Athens

3

イロン イロン イヨン イヨン

Contents

Modelling Diffusion in Networks

Cascading Behavior in Networks Epidemics

Influence Maximization Problem The Problem KKT Models

Competition Models

э

・聞き ・ ほき・ ・ ほき

Usually the underlying social network of two forms:

э

<ロト <部ト < 注ト < 注ト

Usually the underlying social network of two forms:

- 1. Amorphous population of individuals and effects in aggregate
 - Poll

э

Usually the underlying social network of two forms:

- Amorphous population of individuals and effects in aggregate
 Poll
- 2. Network as a graph and individuals influenced by network neighbors
 - Discussions

Usually the underlying social network of two forms:

- $1. \ \mbox{Amorphous population of individuals and effects in aggregate}$
 - Poll
- 2. Network as a graph and individuals influenced by network neighbors
 - Discussions
- Local effects instead of global:
 - 1. Direct-benefit effects
 - compatibility of technologies for operating systems
 - less cost for cell phones

Usually the underlying social network of two forms:

- $1. \ \mbox{Amorphous population of individuals and effects in aggregate}$
 - Poll
- 2. Network as a graph and individuals influenced by network neighbors
 - Discussions
- Local effects instead of global:
 - 1. Direct-benefit effects
 - compatibility of technologies for operating systems
 - less cost for cell phones
 - 2. Indirect effects like informational effects
 - their choices often provide indirect information of things they know

Cascading Behavior in Networks

A networked Coordination game

- Social network, modeled as graph:
 - nodes are the people
 - edges denote friendship between them
- Two products A and B that are competitive

For each edge:

- If both adopt A, each gets payoff a > 0
- If both adopt B, each gets payoff b > 0
- If they adopt different products, each gets payoff 0

同 ト イ ヨ ト イ ヨ ト

Cascading Behavior and Viral Marketing

- Suppose p of your neighbors have adopted A and 1 p B.
- Expected gain *pda* if you adopt A and (1 *p*)*db* if you adopt B
- If $p \ge \frac{b}{a+b} (= q)$, you prefer to adopt A.
- If a node has more than q neighbors who have adopted A, he alters to A

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cascading Behavior and Viral Marketing

- Suppose p of your neighbors have adopted A and 1 p B.
- Expected gain *pda* if you adopt A and (1 *p*)*db* if you adopt B
- If $p \ge \frac{b}{a+b} (= q)$, you prefer to adopt A.
- If a node has more than q neighbors who have adopted A, he alters to A
- Strategies for A to ameliorate its situation:
 - 1. Increasing *a* (making an existing innovation more attractive can generally increase its reach)
 - 2. Convincing a small number of key people to switch from B to A
 - A small number of initial adopters essentially start a long fuse that eventually spreads globally
 - ► Great question: How to choose these key people?

Suppose now everybody has adopted ${\cal B}$ and you switch some nodes to ${\cal A}$

If a node has more than q neighbors who have adopted A, he alters to A

э

Suppose now everybody has adopted ${\cal B}$ and you switch some nodes to ${\cal A}$

- If a node has more than q neighbors who have adopted A, he alters to A
- When does it stop?

э

(人間) ト く ヨ ト く ヨ ト

Suppose now everybody has adopted ${\cal B}$ and you switch some nodes to ${\cal A}$

- If a node has more than q neighbors who have adopted A, he alters to A
- When does it stop?
 - When nobody has more than q neighbors in A
- ▶ When will A have a complete cascade?

A B + A B +

Suppose now everybody has adopted ${\cal B}$ and you switch some nodes to ${\cal A}$

- If a node has more than q neighbors who have adopted A, he alters to A
- When does it stop?
 - When nobody has more than q neighbors in A
- ▶ When will A have a complete cascade?
 - When there exists a *B*-cluster with density 1-q
 - 1 q of each cluster member's neighbors are in the cluster
 - Hence, dense clusters are the only obstacles to cascades

- 4 同 2 4 回 2 4 回 2 4

Modelling Diffusion in Networks 000●0 00	Influence Maximization Problem oo ooooo	Competition 0000
Cascading Behavior in Networks		

Thresholds

Thresholds model the difference between learning for a product and adopting it

- Possibly heterogeneous
 - each node v different (a_v, b_v)

•
$$q_v = \frac{b_v}{a_v + b_v}$$

- ▶ blocking clusters: set of nodes where every node has 1 q_v neighbors in the set
- Bridges between different connecting components not that useful
- More interested in the extent to which a node has access to easily infulenceable nodes

Modelling Diffusion in Networks 0000● 00	Influence Maximization Problem oo ooooo	Competition 0000
Cascading Behavior in Networks		

Nature of networks

Generally weak ties vs strong ties?

- Access to more information via weak ties
- Common knowledge via strong ties (very important for a protest, for instance)

From epidemic diseases to the diffusion of ideas

Contact networks model the ways in which a disease can spread:

- People are nodes
- Interactions are edges
- Danger of interaction is weight
 - when two people meet and one is infected, given probability for the disease to spread

Clear connection between diseases and diffusion of ideas in social networks

The SIR Epidemic Model

Each node in three potential stages

- Susceptible: Before the node has caught the disease, it is susceptible to infection from its neighbors
- Infectious: Once the node has caught the disease, it has some probability to infect each of its susceptible neighbors
 - Probability p to influence (extension: different for each edge)
 - Possibly t_l steps
- Removed: After it has experienced full infectious period, it is removed from consideration

Variation: SIS Epidemic Model

Contents

Modelling Diffusion in Networks Cascading Behavior in Networks Epidemics

Influence Maximization Problem

The Problem KKT Models

Competition Models

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The Problem

Given a social network, find an initial influential set of k nodes that maximize the (expected) number of eventual adopters

- Many models to address this problem.
- Difference on
 - the way the influence is exerted
 - usually some function f of the influence of its neighbors
 - the way a node decides to adopt a product
 - Cascade Models: subclass of epidemic models
 - Threshold Models

Useful Properties

Supposing $\sigma(A)$ (expected) number of eventual adopters for influential set A

1. Monotonicity: if $A \subseteq B$ then $\sigma(A) \leq \sigma(B)$

- Addition of a node in the influential set does not decrease (expected) number of eventual adopters
- 2. Submodularity: if $A \subseteq B$ then
 - $\sigma(A \cup x) \sigma(A) \ge \sigma(B \cup x) \sigma(B)$
 - Marginal gain of a new node less for bigger influential sets
 - ► Greedy algorithm (pick the node that maximizes the marginal gain of eventual adopters) has (1 ¹/_e)-approx for monotone and submodular functions (Nemhauser)
 - Generally difficult to find it exactly so emphasis on models with these nice properties

< ロ > < 同 > < 回 > < 回 > < □ > <

Linear Threshold Model

- Each edge e some weight be
- Each node u some threshold θ_u uniformally at random from [0, 1]
- If $\sum_{w \in AN(u)} b_{w,u} \ge \theta_u$, *u* adopts the product
- ▶ NP-hard. Reduction from Vertex Cover.
- Monotone and submodular. Idea of the proof:
 - One edge e is considered *live* w.p. b_e
 - All the other blocked
 - ▶ All edges blocked w.p. $q \sum w \in N(u)b_{w,u}$
 - The set of all reachable paths is the eventual adopting nodes
 - Stochastically equivalent to the Linear Threshold Model

3

- 4 同 2 4 日 2 4 日 2 4

Independent Cascade Model

- When a node u becomes active, it has a single chance to influence each neighbor w w.p. p_{u,w}
- Both this and the previous model are *progressive* models (no colored node can become uncolored later)
- NP-hard.
 - Reduction from Set Cover.
 - 2 layers (sets and unions)
 - ▶ $p_{e,s} = 1$ iff $e \in S$
 - Can we have eventual influence of n + k?
- Monotone and submodular. Idea of the proof:
 - ► A biased coin *p_e* for each edge to decide if it is *live* or not
 - A non-negative linear combination of submodular functions is itself submodular

- 4 同 6 4 日 6 4 日 6

Decreasing Cascade Model

- Sometimes the first influencers tend to have more impact on us than the latter
- $p_v(u,S) \ge p_v(u,T)$ for $S \subseteq T$
- Order-independence necessary
- NP-hard. Reduction from Vertex Cover
- Monotone and submodular

同 ト イ ヨ ト イ ヨ ト

Deterministic Thresholds

- It is NP-hard to approximate anything with $\Omega(n^{1-\epsilon})$.
- That's why, randomized thresholds
- Same hardness even if the thresholds are majority thresholds
- Reduction from Set Cover, similar to Independent Cascade Model's

・ 同 ト ・ ヨ ト ・ ヨ ト

Computation of Utility

- Exact computation of the utility is *#P*-hard.
- Reduction from Counting simple paths in a graph.
- FPRAS for approximating it as well as we wish
- Hence the approximation algorithm gives $(1 \frac{1}{e} \epsilon)$ -approximation for the best response

- 4 同 2 4 回 2 4 回 2 4

Contents

Modelling Diffusion in Networks Cascading Behavior in Networks Epidemics

Influence Maximization Problem The Problem KKT Models

Competition

Models

э

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Competitive Cascade Model

- Competitive Influence Maximization Problem:
- when m firms try to propagate their influence in a competitive way
- Simple extension of Independent Cascade Model with multiple firms
- Expected number of eventual adopters by last firm monotone and submodular
- Approximation algorithm for last firm's best response

Weight-Proportional Competitive Linear Threshold Model

- Progressive process, Red and Blue firm
- Each edge e has a weight w_e
- Each node θ_u chooses a threshold uniformally at random
- Node adopts if total influence exerted is greate or equal to its threshold
- It chooses the color, weight-proportionally to the influence it takes from each

A B M A B M

Weight-Proportional Competitive Linear Threshold Model

- Progressive process, Red and Blue firm
- Each edge e has a weight w_e
- Each node θ_u chooses a threshold uniformally at random
- Node adopts if total influence exerted is greate or equal to its threshold
- It chooses the color, weight-proportionally to the influence it takes from each
- Generally not monotone nor submodular
- The reason is that the first influencers have double effect
 - When they exert influence at first, they take the node if they overcome the threshold
 - Unless this happens, they have second chances every time more influence is exerted to the node, due to the weight-proportional tie breaking rule

Separated-Threshold Model for Competing Technologies

- Here firms influences aren't aggregated
- Each has its own influence and each node has two thresholds, one for each
- When $\sum_{u \in I_A t-1} w_{u,w}^A \ge \theta_w^A$ then w adopts A's product.
- If both thresholds are overpassed, some tie-breaking rule, i.e. simple coinflip
- As expected, monotone
- Still not submodular: tie-breaking rule is to be blamed but unless extreme assumptions, no tie-breaking rule makes it submodular

Switching-selection Model: A general framework

- General framework of models
- There is a switching function, which decides whether a node will adopt some product, according to the total influence exerted to it
- And a selection function, which decides which product it will adopt, given the influences exerted by each and given the fact that the node has decided to buy
- Includes many models as special cases
- Offers an intuition about how domineering the initial difference in budgets is (according to the nature of the functions)
 - Budget Multiplier
- Offers an intuition about how bad the equilibria can be
 - Price of Anarchy

(人間) ト く ヨ ト く ヨ ト