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Facing Untractability via Parameters

When he hit the wall of NP-completeness we try other
methods

Probabilistic Algorithms ( losing certainty )

Approximations (sacrificing the exact solution)

Through Parameterized algorithms we avoid the above by
searching solutions for only part or the universe of the
instances

Parameters

We correlate a problem with a parameter and design
algorithms on the notion that our instances have the given
parameter bounded and in general terms small
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Our Tools

Parameterized Problem

A parameterization of Σ∗ is a recursive function k : Σ∗ → N.
A parameterized problem is a tuple (L, k), where L ⊆ Σ∗ and
k is a parameterization of Σ∗.

The Class FPT

The class of parameterized problems that can be solved in time

O(f (k) ∗ nc)

, where f(k) is computable.

As always the classification of problems in classes refers to the
best known algorithm or reduction for a parameterized problem
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Picking your weapon

One can therefore design an algorithm that runs in the above
time for any parameter he chooses. For instance we could try
parameterizing a problem by the parameter n-1 where n is th
size. The above definition does not give any information
towards the nature of the parameter. The example given here
would characterise any NP-hard problem as FPT. This is
obviously not what we meant when requesting parameterized
tractability for NP-hard problems . There are two important
thing to keep in mind when choosing a parameter.

1 The parameter will be considered constant and small -
We have to choose it in a way that is realistic .

2 The instances that have the parameter satisfying the
above should be as many as possible
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Examples

In Optimisation problems one of the most common
parameters is the size of the solution ( called natural
parameterization )

On Constraint problems ( such as SAT ) we often
parameterize by the number of constraints ( in SAT that
would mean the number of Clauses )

For properties of graphs we often use parameters such as
max degree , colour number and other easy or hard to
track properties ( such as tree-width which we will study
later)
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Some guys walk into a bar

In a town the Doorman of a bar must choose who he lets in so
that there will be no feuds between them. We represent the
people by vertices and the feuds by edges between them.

Vertex Cover

Given a graph G=(V,E) find the min opt number of vertices to
delete so there will be no edges left in the graph.

Official Parameterized Version

Input: A Graph G=(V,E) Parameter: A Positive Integer k
Output: Does G have a VC of size k?

Since this is an optimisation problem as we already mentioned
we usually use as a parameter the size of the solution.
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Solving Vertex Cover

Main Idea

The running time or an algorithms usually explodes when there
is branching affected by the size. Make the branching bound
by the parameter and we will have the requested time bound. .

Lets try an algorithm.

1 Begin with the root node labelled by zero. (Represents
the an empty VC containing none of V )

2 For one edge (uv) of the graph corresponding to this
levels each node branch tho children one containing u and
one containing v and label accordingly.

3 update the graph by each time deleting the node’s label
vertices.

4 repeat k times
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Example

We will check a Graph for a VC of size 2

G:
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Cont.

What me manage this way :

Resulting tree is of depth k

Each level i of resulting tree T has nodes with exactly i
vertices in the label

If there is a leaf that by deleting its label’s vertices from
G there is no edge left in G then this set of vertices is a
VC of size k.

Why is the above procedure correct? yes! For each edge we
have to delete at least one end at some point. Since we
explore both options if there is a VC of size k this algorithm
will find it .
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Find the reason the problem is hard

Lets consider again the example of the bar.

1 The Doorman only wants to forbid k people from
entering. If someone has more that k feuds he has to go (
otherwise we would have to send away his k neighbours)

2 If someone has no feuds then he enters without checking

3 If someone has only one feud remove his neighbour from
the set

Are those enough to result to a FPT algorithm? YES!
With only one iteration (O(n) time) we are left with vertices
of degree 2,..,k
How many simple graphs are there with these degrees?
We need a VC of size k which means we have at most k2

edges ( otherwise there is no VC of size k )
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Brute Force the Small kernel

Our instance now is of a size expressed only with respect to k
So what do we do?

1 We could use brute force. In the FPT framework we are
already ”fast”

2 Run a Bounded Depth First Search on the k2 plausible
sets to find a VC set. ( Previous Technique )

Of course when using the reduction rule (1) we have to
decrease our k accordingly . This doesn’t change the
complexity result.

Note for Reference

There is a parameterized algorithm that solves VC in
O(1.2738k + kn) time. Extremely usefully in computational
biology or small towns with only one bar.
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Heavy tools

Until now our tools have basically been all about utilising extra
knowledge and structure in order to construct better
algorithms.
But we have other more interesting Programming techniques
to build effective algorithms.
What happens when say we combine the fixed parameter
approach with the notion of dynamic programming?

Parameterized Smaller Instance

To Use Dynamic programming we have to be able to express
the solution of the current instance as an optimal solution of
smaller ones. We will see how this is done when the smaller
instances are defined by a bound parameter.
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Treewidth and tree decomposition
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Other Metrics

There are many ways to parameterize a problem.

you can parameterize by rank of a Matrix

by the eccentricity of a vertex

by the density of a graph

BUT! : As we mentioned you have to be sure that by
assuming the parameter bound and small you are not ignoring
important or common instances of a problem.
What have we came up with? Treewidth! .
Treewidth is a graph metric we use to define in a way how far
a graph is from a tree.
And why do we do that? Because most graph properties are
extremely easy to be checked on Trees
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Treewidth

Definitions

1 A Tree decomposition of a graph G=(V,E) is a tree T
together with a collection of subsets Tx (called bags) of
V labelled with the vertices x of T such that ∪Tx = V
and the following hold

For every edge uv of G there is a some x such that u,v
∈Tx

If y is a vertex of on the unique path in T from x to z
then Tx ∩ Tz ⊆ Ty .

2 The width of a tree decomposition is the maximum value
of |Tx | -1 over all the vertices of the tree T of the
decomposition.

3 The treewidth of Graph G is the minimum treewidth of all
thee decompositions of G.

Ellie Anastasiadi — Parameterized Algorithms 24/39
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Example
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Outline

3 Techniques based on graph structure
Treewidth and tree decomposition
Dynamic programming
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Independent Set

Given a Graph G find the maximum Set L such that if u, v ∈ L
then uv /∈ E
This Problem is NP-hard
BUT!: The kinds or real-world problems that require us to
check this property have bounded treewidth! So:
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Dynamic Programming on Bounded TW

The Algorithm

1 Given a Graph and a tree Decomposition of tw k. (we will
use the one given in the previous example )

2 For each node of T we construct a vector with 2k

positions as follows

We store in each position of the vector the size of the larger
Independent set this far. That is the size of the set
corresponding to the vectors bit plus the size of the previously
larger Independent set for the vectors already filled.
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Cont.

Of course we are careful if the current bit of the vector has
common vertices with the previous max independent set . But
we only have to make this check for adjacent nodes of T .
Continuing by adding up independent sets for empty leaf
nodes we get the Max independent set.
We Can pause here and try it for the above tree
decomposition.
The proof of this algorithm can be found in the literature
given later.
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Outline

1 Introduction

2 Elementary techniques

3 Techniques based on graph structure

4 Optimisation , Approximation & Connections to FPT
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Optimisation

So what have we learned?

We have found more efficient ways to solve decision
problems using parameters.

The problems we tried this on are NP-optimisation ones.

What is the correlation? Do the algorithms we described
remain efficient?
We will try to formulate this
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Cont

Thanks to Parameterized Complexity Theory we have the
following

Theorem. Cai and Chen

Iff you can check if the decision version of an NP optimisation
problem in FPT time then you can find the optimal in FPT
time.

Can you think of a proof?

This is not the actual formulation of the theorem
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FPT and Appoximation

1 Pick your favourite optimisation Problem ( Preferably one
from the lessons you had on approximation algorithms )

2 Make it into a Decision one and then parameterize it by
the size of the solution

3 Is it FTP?

Theorem : Bazgan , Cai and Chen

If a NP-optimisation Problem has a fully Polynomial time
approximation scheme then it is FPT

And we are going to prove this
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Proof

1 W.L.G Say the problem is a maximisation one

2 Since it has a fully PTAS there is an algorithm A that
runs in time O(p((1/e) ∗ |x |)) and approximates it by an
error of e .

3 We only need to prove that the decision version is FPT

4 For an instance < x , k > run A for < x , 1/2k >

What is the running time of this? Find e with
respect to k

5 if k < f (x) then x < opt(x) since this is a maximisation
problem
if k > f (x) then x − 1 ≥ f (x) , but
e < 1/k ⇒ k > opt(x)
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Proof Cont.

Therefore k < f (x) iff k < opt(x)

A runs in time O(p((2k) ∗ |x |))

Therefore The Problem is FPT

Unfortunately a convex does not exist.
Given a FPT algorithm we cannot guarantee the existence of a
fully time approximation Scheme .
However this allows us to establish that many problems are
FPT without effort

For instance

Bounded Knapsack

Planar Independent Set

Linear Extension Count

Are all FPT
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Approximation

Say though that a NP-problem is Fixed parameter
Intractable.

So what do we do?

Can we approximate? Pause for suspense..
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At least not efficiently

Theorem: Bazgan , Cai and Chen

If a NP-Optimisation Problem is Fixed Parameter Intractable
then it has no fully polynomial time approximation Scheme.
To be more specific under the hypothesis FPT 6= W [1] for
parameterized problems There is not fully PTAS for any W[1]
problems.

A known problem that is W[1] hard but not considered yet NP
hard is the Matrix VC dimension. This means that although
this problem is not proven to be NP-complete doesn’t have a
FPTAS
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