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Preface

This is a very preliminary version of some notes that are intended to introduce computer science
students to elementary notions of algebra and number theory, especially those notions that are
relevant to the study of cryptography. These notes are meant to be quite self contained — the
only prerequisites are some programming experience, a little knowledge of probabilities, and, most
importantly, the ability to read and write mathematical proofs (or at least the willingness and
ability to learn to do so).

Many proofs of theorems that are relatively straightforward applications of definitions and other
theorems are left as exercises for the reader. There are also many examples that the reader can
verify as well. Other than these, there are no “formal” exercises in these notes.

As stated above, these notes are in a very preliminary form. They certainly need more proof
reading and polishing, and I may eventually want to add some new material as well. Also, there
are currently no bibliographic references, which is a serious problem that I will have to correct very
soon.

If you find any typos or more serious problems, please let me know, so that I can correct the
problem in a future revision.
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Remarks on Notation

• log(x) denotes the natural logarithm of x.

• For any function f from a set A into a set B, if A′ ⊂ A, then f(A′) := {f(a) ∈ B : a ∈ A′}.
For b ∈ B, f−1(b) := {a ∈ A : f(a) = b}, and more generally, for B′ ⊂ B, f−1(B′) := {a ∈
A : f(a) ∈ B′}.
f is called one to one or injective if f(a) = f(b) implies a = b. f is called onto or
surjective if f(A) = B. f is called bijective if it is both injective and surjective; in this
case, f is called a bijection.

• Suppose f and g are functions from either the non-negative integers or non-negative reals
into the non-negative reals. More generally, we may allow the domain of definition of f and
g to consist all off integers or reals above some fixed bound. Then we write f = O(g) if
there exist constants c > 0 and x0 ≥ 0 such that f(x) ≤ cg(x) for all x ≥ x0. We write
f = Ω(g) if g = O(f), and we write f = Θ(g) if f = O(g) and g = O(f). We write f ∼ g if
limx→∞ f(x)/g(x) = 1, and we write f = o(g) if limx→∞ f(x)/g(x) = 0.

One also may write O(g) in an expression to denote an implicit function f such that f = O(g).
For example, one may write (n+ 1)(n+ 2) = n2 +O(n). Similarly for Ω(g), Θ(g), and o(g).
Note that f ∼ g is equivalent to f = g(1 + o(1)).
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Chapter 1

Basic Properties of the Integers

This chapter reviews some of the basic properties of the integers, including notions of divisibility and
primality, unique factorization into primes, greatest common divisors, and least common multiples.

1.1 Divisibility and Primality

Consider the integers Z = {. . . ,−1, 0, 1, 2, . . .}. For a, b ∈ Z, we say that b divides a, and write
b | a, if there exists c ∈ Z such that a = bc. If b | a, then b is called a divisor of a. If b does not
divide a, then we write b - a.

We first state some simple facts:

Theorem 1.1 For all a, b, c ∈ Z, we have

1. a | a, 1 | a, and a | 0;

2. 0 | a if and only if a = 0;

3. a | b and b | c implies a | c;

4. a | b implies a | bc;

5. a | b and a | c implies a | b+ c;

6. a | b and b | a if and only if a = ±b.

Proof. Exercise. 2

We say that an integer p is prime if p > 1 and the only divisors of p are ±1 and ±p. Conversely,
and integer n is called composite if n > 1 and it is not prime. So an integer n > 1 is composite if
and only if n = ab for some integers a, b with 1 < a, b < n.

A fundamental fact is that any integer can be written as a signed product of primes in an
essentially unique way. More precisely:

Theorem 1.2 Every non-zero integer n can be expressed as

n = ±
∏
p

pνp(n),

where the product is over all primes, and all but a finite number of the exponents are zero. Moreover,
the exponents and sign are uniquely determined by n.
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To do prove this theorem, we may clearly assume that n is positive.
The proof of the existence part of Theorem 1.2 is easy. If n is 1 or prime, we are done; otherwise,

there exist a, b ∈ Z with 1 < a, b < n and n = ab, and we apply an inductive argument with a and
b.

The proof of the uniqueness part of Theorem 1.2 is not so simple, and most of the rest of this
chapter is devoted to developing the ideas behind such a proof. The essential ingredient in the
proof is the following:

Theorem 1.3 (Division with Remainder Property) For a, b ∈ Z with b > 0, there exist
unique q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. Consider the set S of non-negative integers of the form a − xb with x ∈ Z. This set is
clearly non-empty, and so contains a minimum. Let r = a− qb be the smallest integer in this set.
By definition, we have r ≥ 0. Also, we must have r < b, since otherwise, we would have r − b ∈ S,
contradicting the minimality of r.

That proves the existence of r and q. For uniqueness, suppose that a = bq+ r and a = bq′+ r′,
where 0 ≤ r, r′ < b. Then subtracting these two equations and rearranging terms, we obtain

r′ − r = b(q − q′). (1.1)

Now observe that by assumption, the left-hand side of (1.1) is less than b in absolute value. However,
if q 6= q′, then the right-hand side of (1.1) would be at least b in absolute value; therefore, we must
have q = q′. But then by (1.1), we must have r = r′. 2

In the above theorem, it is easy to see that q = ba/bc, the greatest integer less than or equal
to a/b. We shall write r = a rem b. For a ∈ Z and a positive integer b, it is clear that b | a if and
only if a rem b = 0.

1.2 Ideals and Greatest Common Divisors

To carry on with the proof of Theorem 1.2, we introduce the notion of an ideal in Z, which is a non-
empty set of integers that is closed under addition and subtraction, and closed under multiplication
by integers. That is, a non-empty set I ⊂ Z is an ideal if and only if for all a, b ∈ I and all z ∈ Z,
we have

a+ b ∈ I, a− b ∈ I, and az ∈ I.

Note that in fact closure under addition and subtraction already implies closure under multiplication
by integers, and so the definition is a bit redundant.

For a1, . . . , ak ∈ Z, define

a1Z+ · · ·+ anZ := {a1z1 + · · · akzk : z1, . . . , zk ∈ Z}.

We leave it to the reader to verify that a1Z+ · · ·+ anZ is an ideal, and this ideal clearly contains
a1, . . . , ak. An ideal of the form aZ is called a principal ideal.

Theorem 1.4 For any ideal I ⊂ Z, there exists a unique non-negative integer d such that I = dZ.
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Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0 does the job, so let
us assume that I 6= {0}. Since I contains non-zero integers, it must contain positive integers, since
if x ∈ I then so is −x. Let d be the smallest positive integer in I. We want to show that I = dZ.

We first show that I ⊂ dZ. To this end, let c be any element in I. It suffices to show that d | c.
Using the Division with Remainder Property, write c = qd + r, where 0 ≤ r < d. Then by the
closure properties of ideals, one sees that r = c− qd is also an element of I, and by the minimality
of the choice of d, we must have r = 0. Thus, d | c.

We next show that dZ ⊂ I. This follows immediately from the fact that d ∈ I and the closure
properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note that if dZ = d′Z, we
have d | d′ and d′ | d, from which it follows that d′ = ±d. 2

For a, b ∈ Z, we call d ∈ Z a common divisor of a and b if d | a and d | b; moreover, we call d
the greatest common divisor of a and b if d is non-negative and all other common divisors of a
and b divide d. It is immediate from the definition of a greatest common divisor that it is unique
if it exists at all.

Theorem 1.5 For any a, b ∈ Z, there exists a greatest common divisor d of a and b, and moreover,
aZ+ bZ = dZ; in particular, as+ bt = d for some s, t ∈ Z.

Proof. We apply the previous theorem to the ideal I = aZ + bZ. Let d ∈ Z with I = dZ, as in
that theorem. Note that a, b, d ∈ I.

Since a ∈ I = dZ, we see that d | a; similarly, d | b. So we see that d is a common divisor of a
and b.

Since d ∈ I = aZ + bZ, there exist s, t ∈ Z such that as + bt = d. Now suppose a = a′d′ and
b = b′d′ for a′, b′, d′ ∈ Z. Then the equation as + bt = d implies that d′(a′s + b′t) = d, which says
that d′ | d. Thus, d is the greatest common divisor of a and b. 2

For a, b ∈ Z, we denote by gcd(a, b) the greatest common divisor of a and b.
We say that a and b are relatively prime if gcd(a, b) = 1. Notice that a and b are relatively

prime if and only if aZ+ bZ = Z, i.e., if and only if there exist s, t ∈ Z such that as+ bt = 1.

Theorem 1.6 For a, b, c ∈ Z such that c | ab and gcd(a, c) = 1, we have c | b.

Proof. Suppose that c | ab and gcd(a, c) = 1. Then since gcd(a, c) = 1, by Theorem 1.5 we have
as+ ct = 1 for some s, t ∈ Z. Multiplying this equation by b, we obtain

abs+ cbt = b. (1.2)

Since c divides ab by hypothesis, and since c clearly divides cbt, it follows that c divides the left-hand
side of (1.2), and hence that c divides b. 2

As a consequence of this theorem, we have:

Theorem 1.7 Let p be prime, and let a, b ∈ Z. Then p | ab implies that p | a or p | b.

Proof. The only divisors of p are ±1 and ±p. Thus, gcd(p, a) is either 1 or p. If p | a, we are
done; otherwise, if p - a, we must have gcd(p, a) = 1, and by the previous theorem, we conclude
that p | b. 2
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1.3 Finishing the Proof of Theorem 1.2

Theorem 1.7 is the key to proving the uniqueness part of Theorem 1.2. Indeed, suppose we have

p1 · · · pr = p′1 · · · p′s,

where the pi and p′i are primes (duplicates are allowed among the pi and among the p′i). If r = 0,
we must have s = 0 and we are done. Otherwise, as p1 divides the right-hand side, by inductively
applying Theorem 1.7, one sees that p1 is equal to some p′i. We can cancel these terms and proceed
inductively (on r). That proves the uniqueness part of Theorem 1.2.

1.4 Further Observations

For non-zero integers a and b, it is easy to see that

gcd(a, b) =
∏
p

pmin(νp(a),νp(b)),

where the function νp(·) is as implicitly defined in Theorem 1.2.
For a, b ∈ Z a common multiple of a and b is an integer m such that a | m and b | m;

moreover, m is a least common multiple of a and b if m is non-negative and m divides all
common multiples of a and b. In light of Theorem 1.2, it is clear that the least common multiple
exists and is unique; indeed, if we denote the least common multiple of a and b as lcm(a, b), then
for non-zero integers a and b, we have

lcm(a, b) =
∏
p

pmax(νp(a),νp(b)).

Moreover, for all a, b ∈ Z, we have

gcd(a, b) · lcm(a, b) = ab.

Finally, we recall the basic fact that that there in infinitely many primes. For a proof of this,
suppose that there were only finitely many primes, call them p1, . . . , pk. Then set x = 1 +

∏k
i=1 pi,

and consider any prime p that divides x. Clearly, p cannot equal any of the pi, since if it did, we
would would have p | 1, which is impossible. Therefore, the prime p is not among p1, . . . , pk, which
contradicts our assumption that these are the only primes.
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Chapter 2

Congruences

This chapter reviews the notion of congruences.

2.1 Definitions and Basic Properties

For positive integer n and for a, b ∈ Z, we say that a is congruent to b modulo n if n | (a− b),
and we write a ≡ b (mod n). If n - (a− b), then we write a 6≡ b (mod n). The number n appearing
in such congruences is called the modulus.

A trivial observation is that a ≡ b (mod n) if and only if there exists an integer c such that
a = b+ cn. Another trivial observation is that if a ≡ b (mod n) and n′ | n, then a ≡ b (mod n′).

A key property of congruences is that they are “compatible” with integer addition and multi-
plication, in the following sense:

Theorem 2.1 For all positive integers n, and all a, a′, b, b′ ∈ Z, if a ≡ a′ (mod n) and b ≡
b′ (mod n), then

a+ b ≡ a′ + b′ (mod n)

and
a · b ≡ a′ · b′ (mod n).

Proof. Suppose that a ≡ a′ (mod n) and b ≡ b′ (mod n). This means that there exist integers c
and d such that a′ = a+ cn and b′ = b+ dn. Therefore,

a′ + b′ = a+ b+ (c+ d)n,

which proves the first equality of the theorem, and

a′b′ = (a+ cn)(b+ dn) = ab+ (ad+ bc+ cdn)n,

which proves the second equality. 2

2.2 Solving Linear Congruences

For a positive integer n, and a ∈ Z, we say that a is a unit modulo n if there exists a′ ∈ Z such
that aa′ ≡ 1 (mod n), in which case we say that a′ is a multiplicative inverse of a modulo n.

Theorem 2.2 An integer a is a unit modulo n if and only if a and n are relatively prime.
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Proof. This follows immediately from the fact that a and n are relatively prime if and only if
there exist s, t ∈ Z such that as+ bt = 1. 2

We now prove a simple a “cancellation law” for congruences:

Theorem 2.3 If a is relatively prime to n, then ax ≡ ax′ (mod n) if and only if x ≡ x′ (mod n).
More generally, if d = gcd(a, n), then ax ≡ ax′ (mod n) if and only if x ≡ x′ (mod n/d).

Proof. For the first statement, assume that gcd(a, n) = 1, and let a′ be a multiplicative inverse of
a modulo n. Then, ax ≡ ax′ (mod n) implies a′ax ≡ a′ax′ (mod n), which implies x ≡ x′ (mod n),
since a′a ≡ 1 (mod n). Conversely, if x ≡ x′ (mod n), then trivially ax ≡ ax′ (mod n). That proves
the first statement.

For the second statement, let d = gcd(a, n). Simply from the definition of congruences, one
sees that in general, ax ≡ ax′ (mod n) holds if and only if (a/d)x ≡ (a/d)x′ (mod n/d). Moreover,
since a/d and n/d are relatively prime, the first statement of the theorem implies that (a/d)x ≡
(a/d)x′ (mod n) holds if and only if x ≡ x′ (mod n/d). That proves the second statement. 2

We next look at solutions x to congruences of the form ax ≡ b (mod n), for given integers
n, a, b.

Theorem 2.4 Let n be a positive integer and let a, b ∈ Z. If a is relatively prime to n, then the
congruence ax ≡ b (mod n) has a solution x; moreover, any integer x′ is a solution if and only if
x ≡ x′ (mod n).

Proof. The integer x = ba′, where a′ is a multiplicative inverse of a modulo n, is clearly a solution.
For any integer x′, we have ax′ ≡ b (mod n) if and only if ax′ ≡ ax (mod n), which by Theorem 2.3
holds if and only if x ≡ x′ (mod n). 2

In particular, this theorem implies that multiplicative inverses are uniquely determined modulo
n.

More generally, we have:

Theorem 2.5 Let n be a positive integer and let a, b ∈ Z. Let d = gcd(a, n). If d | b, then the
congruence ax ≡ b (mod n) has a solution x, and any integer x′ is also a solution if and only if
x ≡ x′ (mod n/d). If d - b, then the congruence ax ≡ b (mod n) has no solution x.

Proof. Let n, a, b, d be as defined above.
For the first statement, suppose that d | b. In this case, by Theorem 2.3, we have ax ≡

b (mod n) if and only if (a/d)x ≡ (b/d) (mod n/d), and so the statement follows immediately from
Theorem 2.4.

For the second statement, assume that ax ≡ b (mod n) for some integer x. Then since d | n,
we have ax ≡ b (mod d). However, ax ≡ 0 (mod d), since d | a, and hence b ≡ 0 (mod d), i.e., d | b.
2

Next, we consider systems of congruences with respect to moduli that that are relatively prime
in pairs. The result we state here is known as the Chinese Remainder Theorem, and is extremely
useful in a number of contexts.
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Theorem 2.6 (Chinese Remainder Theorem) Let k > 0, and let a1, . . . , ak ∈ Z, and let
n1, . . . , nk be positive integers such that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k. Then there ex-
ists an integer x such that

x ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other integer x′ is also a solution of these congruences if and only if x ≡ x′ (mod n),
where n :=

∏k
i=1 ni.

Proof. Let n :=
∏k
i=1 ni, as in the statement of the theorem. Let us also define

n′i := n/ni (i = 1, . . . , k).

It is clear that gcd(ni, n′i) = 1 for 1 ≤ i ≤ k, and so let mi be a multiplicative inverse of n′i modulo
ni for 1 ≤ i ≤ k, and define

zi := n′imi (i = 1, . . . , k).

By construction, one sees that for 1 ≤ i ≤ k, we have

zi ≡ 1 (mod ni)

and
zi ≡ 0 (mod nj) for 1 ≤ j ≤ k with j 6= i.

That is to say, for 1 ≤ i, j ≤ k, zi ≡ δij (mod nj), where δij := 1 for i = j and δij := 0 for i 6= j.
Now define

x :=
k∑
i=1

ziai.

One then sees that for 1 ≤ j ≤ k,

x ≡
k∑
i=1

ziai ≡
k∑
i=1

δijai ≡ aj (mod nj).

Therefore, this x solves the given system of congruences.
Moreover, if x′ ≡ x (mod n), then since ni | n for 1 ≤ i ≤ k, we see that x′ ≡ x ≡ ai (mod ni)

for 1 ≤ i ≤ k, and so x′ also solves the system of congruences.
Finally, if x′ solves the system of congruences, then x′ ≡ x (mod ni) for 1 ≤ i ≤ k. That is,

ni | (x′ − x) for 1 ≤ i ≤ k. Since gcd(ni, nj) = 1 for i 6= j, this implies that n | (x′ − x), i.e.,
x′ ≡ x (mod n). 2

2.3 Residue Classes

It is easy to see that for a fixed value of n, the relation · ≡ · (mod n) is an equivalence relation on
the set Z; that is, for all a, b, c ∈ Z, we have

• a ≡ a (mod n),

• a ≡ b (mod n) implies b ≡ a (mod n), and

• a ≡ b (mod n) and b ≡ c (mod n) implies a ≡ c (mod n).
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As such, this relation partitions the set Z into equivalence classes. We denote the equivalence class
containing the integer a by [a mod n], or when n is clear from context, we may simply write [a].
Historically, these equivalence classes are called residue classes modulo n, and we shall adopt
this terminology here as well.

It is easy to see from the definitions that

[a mod n] = a+ nZ := {a+ nz : z ∈ Z}.

Note that a given residue class modulo n has many different “names”; e.g., the residue class [1] is
the same as the residue class [1+n]. For any integer a in a residue class, we call a a representative
of that class.

Theorem 2.7 For a positive integer n, there are precisely n distinct residue classes modulo n,
namely, [a] for 0 ≤ a < n. Moreover, for any k ∈ Z, the residue classes [k + a] for 0 ≤ a < n are
distinct and therefore include all residue classes modulo n.

Proof. Exercise. 2

Fix a positive integer n. Let us define Zn as the set of residue classes modulo n. We can
“equip” Zn with binary operators defining addition and multiplication in a natural way as follows:
for a, b ∈ Z, we define

[a] + [b] := [a+ b],

and we define
[a] · [b] := [a · b].

Of course, one has to check this definition is unambiguous, i.e., that the addition and multiplica-
tion operators are well defined, in the sense that the sum or product of two residue classes does not
depend on which particular representatives of the classes are chosen in the above definitions. More
precisely, one must check that if [a] = [a′] and [b] = [b′], then [a op b] = [a′ op b′], for op ∈ {+, ·}.
However, this property follows immediately from Theorem 2.1.

These definitions of addition and multiplication operators on Zn yield a very natural algebraic
structure whose salient properties are as follows:

Theorem 2.8 Let n be a positive integer, and consider the set Zn of residue classes modulo n with
addition and multiplication of residue classes as defined above.

For all a, b, c ∈ Z, we have

1. [a] + [b] = [b] + [a] (addition is commutative),

2. ([a] + [b]) + [c] = [a] + ([b] + [c]) (addition is associative),

3. [a] + [0] = [a] (existence of additive identity),

4. [a] + [−a] = [0] (existence of additive inverses),

5. [a] · [b] = [b] · [a] (multiplication is commutative),

6. ([a] · [b]) · [c] = [a] · ([b] · [c]) (multiplication is associative),

7. [a] · ([b] + [c]) = [a] · [b] + [a] · [c] (multiplication distributes over addition)

8



8. [a] · [1] = [a] (existence of multiplicative identity).

Proof. Exercise. 2

An algebraic structure satisfying the conditions in the above theorem is known more generally
as a “commutative ring with unity,” a notion that we will discuss in §5.

Note that while all elements of Zn have an additive inverses, not all elements of Zn have a
multiplicative inverse; indeed, by Theorem 2.2, [a mod n] has a multiplicative inverse if and only if
gcd(a, n) = 1. One denotes by Z∗n the set of all residue classes [a] of Zn that have a multiplicative
inverse; it is easy to see that Z∗n is closed under multiplication.
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Chapter 3

Computing with Large Integers

3.1 Complexity Theory

When presenting an algorithm, we shall always use a high-level, and somewhat informal, notation.
However, all of our high-level descriptions can be routinely translated into the machine-language of
an actual computer. So that our theorems on the running-times of algorithms have a precise math-
ematical meaning, we formally define an “idealized” computer: the Random Access Machine
or RAM.

A RAM consists of an unbounded sequence of memory cells

m[0],m[1],m[2], . . .

each of which can store an arbitrary integer, together with a program. A program consists of a
finite sequence of instructions I0, I1, . . ., where each instruction is of one of the following types:

arithmetic This type of instruction is of the form x ← y ◦ z, where ◦ represents one of the
operations addition, subtraction, multiplication, or integer division. The values y and z are
of the form c, m[a], or m[m[a]], and x is of the form m[a] or m[m[a]], where c is an integer
constant and a is a nonnegative integer constant. Execution of this type of instruction causes
the value y ◦ z to be evaluated and then stored in x.

branching This type of instruction is of the form IF y ∼ z GOTO i, where i is the index of
an instruction, and where ∼ is one of the comparison operators =, 6=, <,>,≤,≥, and y and
z are as above. Execution of this type of instruction causes the “flow of control” to pass
conditionally to instruction Ii.

halt The HALT instruction halts the execution of the program.

A RAM executes by executing instruction I0, and continues to execute instructions, following
branching instructions as appropriate, until a HALT instruction is executed.

We do not specify input or output instructions, and instead assume that the input and output
are to be found in memory at some prescribed location, in some prescribed format.

To determine the running-time of a program on a given input, we charge 1 unit of time to each
instruction executed.

This model of computation closely resembles a typical modern-day computer, except that we
have abstracted away many annoying details. However, there are two details of real machines that
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cannot be ignored; namely, any real machine has a finite number of memory cells, and each cell
can store numbers only in some fixed range.

The first limitation must be dealt with by either purchasing sufficient memory or designing
more space-efficient algorithms.

The second limitation is especially annoying, as we will want to perform computations with
quite large integers—much larger than will fit into any single memory cell of an actual machine.
To deal with this limitation, we shall represent such large integers as vectors of digits to some base,
so that each digit is bounded so as to fit into a memory cell. This is discussed in more detail in
the next section. Using this strategy, the only other numbers we actually need to store in memory
cells are “small” numbers representing array indices, addresses, and the like, which hopefully will
fit into the memory cells of actual machines.

Thus, whenever we speak of an algorithm, we shall mean an algorithm that can be implemented
on a RAM, such that all numbers stored in memory cells are “small” numbers, as discussed above.
Admittedly, this is a bit imprecise. For the reader who demands more precision, we can make a
restriction, such as the following: after the execution of m steps, all numbers stored in memory
cells are bounded by mc + d in absolute value, for constants c and d — in making this formal
requirement, we assume that the value m includes the number of memory cells of the input.

Even with these caveats and restrictions, the running time as we have defined it for a RAM
is still only a rough predictor of performance on an actual machine. On a real machine, different
instructions may take significantly different amounts of time to execute; for example, a division
instruction may take much longer than an addition instruction. Also, on a real machine, the
behavior of the cache may significantly affect the time it takes to load or store the operands of an
instruction. However, despite all of these problems, it still turns out that measuring the running
time on a RAM as we propose here is nevertheless a good “first order” predictor of performance
on real machines in many cases.

If we have an algorithm for solving a certain class of problems, we expect that “larger” instances
of the problem will require more time to solve that “smaller” instances. Theoretical computer
scientists sometimes equate the notion of an “efficient” algorithm with that of a “polynomial-time”
algorithm (although not everyone takes theoretical computer scientists very seriously, especially
on this point). A polynomial-time algorithm is one whose running time on inputs of length n is
bounded by nc + d for some constants c and d (a “real” theoretical computer scientist will write
this as nO(1)). To make this notion mathematically precise, one needs to define the length of an
algorithm’s input.

To define the length of an input, one chooses a “reasonable” scheme to encode all possible inputs
as a string of symbols from some finite alphabet, and then defines the length of an input as the
number of symbols in its encoding.

We will be dealing with algorithms whose inputs consist of arbitrary integers, or lists of such
integers. We describe a possible encoding scheme using the alphabet consisting of the six symbols
‘0’, ‘1’, ‘-’, ‘,’, ‘(’, and ‘)’. An integer is encoded in binary, with possibly a negative sign. Thus, the
length of an integer x is approximately equal to log2 |x|. We can encode a list of integers x1, . . . , xn
of numbers as “(x̄1, . . . , x̄n)”, where x̄i is the encoding of xi. We can also encode lists of lists, etc.,
in the obvious way. All of the mathematical objects we shall wish to compute with can be encoded
in this way. For example, to encode an n × n matrix of rational numbers, we may encode each
rational number as a pair of integers (the numerator and denominator), each row of the matrix as
a list of n encodings of rational numbers, and the matrix as a list of n encodings of rows.

It is clear that other coding schemes are possible, giving rise to different definitions of input
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length. For example, we could encode inputs in some base other than 2 (but not unary!) or use a
different alphabet. However, such an alternative encoding scheme would change the definition of
input length by at most a constant multiplicative factor, and so would not affect the notion of a
polynomial-time algorithm.

We stress that algorithms may use data structures for representing mathematical objects that
look quite different from whatever encoding scheme one might choose.

3.2 Basic Integer Arithmetic

We will need algorithms to manipulate integers of arbitrary length. Since such integers will exceed
the word-size of actual machines, we represent large integers as vectors of digits to some base B,
along with a bit indicating the sign. Thus, for x ∈ Z, we write

x = ±(
k−1∑
i=0

xiB
i) = ±(xk−1 · · ·x1x0)B,

where 0 ≤ xi < B for 0 ≤ i < k, and usually, we shall have xk−1 6= 0. The integer x will be
represented in memory as a data structure consisting of a vector of digits and a sign-bit. For our
purposes, we shall consider B to be a constant, and moreover, a power of 2. The choice of B as a
power of 2 allows us to extract an arbitrary bit in the binary representation of a number in time
O(1).

We discuss basic arithmetic algorithms for positive integers; they can be very easily adapted to
deal with signed integers. All of these algorithms can be implemented directly in a programming
language that provides a “built-in” signed integer type that can represent all integers whose absolute
value is less than B2, and that provides the basic arithmetic operations (addition, subtraction,
multiplication, integer division). So, for example, using the C programming language’s int type on
a typical 32-bit computer, we could take B = 215. The resulting algorithms would be reasonably
efficient, but not nearly as efficient as algorithms that are much more carefully implemented, and
which take advantage of low-level “assembly language” codes specific to a particular machine’s
architecture (e.g., the GNU Multi-Precision library GMP, available as http://www.swox.com/gmp).

Suppose we have two positive integers a and b, represented with k and ` base-B digits, re-
spectively, with k ≥ `. So we have a = (ak−1 · · · a0)B and b = (b`−1 · · · b0)B. Then using the
standard “paper-and-pencil” method (adapted from base-10 to base-B, of course), we can compute
the base-B representation of a+ b or a− b in time O(k).

Using the standard paper-and-pencil technique, we can compute the k + 1 digit product a · b0
in time O(k). We can then compute the k + ` digit product c = a · b as follows:

c← 0
for i← 0 to `− 1 do

c← c+Bi · abi

As each loop-iteration of this algorithm takes time O(k), the total running-time is O(k`).
We now consider division with remainder. We want to compute q and r such that a = bq + r

and 0 ≤ r < b. Let us assume that a ≥ b; otherwise, we can just set q = 0 and r = a. Also, let
us assume that b`−1 6= 0. The quotient q will have at most m = k − ` + 1 base-B digits. Write
q = (qm−1 · · · q0)B. We compute the digits of q and the value r with the following division with
remainder algorithm.
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r ← a
for i← m− 1 down to 0 do

qi ← br/Bibc
r ← r −Bi · qib

To verify that this procedure is correct, one easily verifies by induction that in each loop
iteration, r < Bi+1b.

It is perhaps not immediately clear how to efficiently implement the step qi ← br/Bibc. As in
the paper-and-pencil one has to make a reasonable “guess” at qi, and then correct the guess if it
turns out to be wrong.

More generally, consider the following situation. Let x and y be positive integers with x/y < B,
and let d = bx/yc. Suppose B = 2t and that y is has n+ t bits in its binary representation, where
n ≥ 0. Then we can write y = ŷ2n + y′, where 2t−1 ≤ ŷ < 2t and 0 ≤ y′ < 2n. We can also write
x = x̂2n + x′, where 0 ≤ x̂ < 22t and 0 ≤ x′ < 2n. Then we can approximate d by d̂ = bx̂/ŷc.

Theorem 3.1 With notation as in the previous paragraph, we have d ≤ d̂ ≤ d+ 2.

Proof. To prove the first inequality, it suffices to show that x − d̂y < y. Using the fact that
x̂ = d̂ŷ + ẑ, where 0 ≤ ẑ < ŷ, we have

x− d̂y ≤ x− d̂ŷ2n ≤ x− (x̂− (ŷ − 1))2n = x− x̂2n + (ŷ − 1)2n

< 2n + (ŷ − 1)2n = ŷ2n ≤ y.

That proves the first inequality.
To prove the second inequality, it suffices to show that x− d̂y ≥ −2y. We have

x− d̂y ≥ x− d̂(ŷ2n + 2n) = x− d̂ŷ2n − d̂2n ≥ x− x̂2n − d̂2n ≥ −d̂2n.

So it suffices to show that d̂2n/y ≤ 2. Using the fact that ŷ ≥ 2t−1, we have

d̂2n

y
≤ x̂2n

ŷy
≤ x

ŷy
≤ 2t

ŷ
≤ 2t

2t−1
= 2.

That proves the second inequality. 2

Now, going back to our division with remainder algorithm, consider executing one iteration of
the main loop. If i = 0 and b < B, then we can compute br/bc in a single step, using the “built-in”
division instruction; otherwise, we apply the above theorem with y := Bib ≥ B and x := r < Bx.
We can extract the high-order t bits from y and the corresponding high-order bits of x, and with
one division of a number with less than 2t-bits by a t-bit number, we get an approximation q̂i to qi.
All of this can be carried out in time O(1). With the above theorem, qi ≤ q̂i ≤ qi + 2. We perform
the subtraction step r ← r −Bi · q̂ib, which takes time O(`). At this point, we can easily detect if
our approximation was too large. Correcting the values of q̂i and r then can be done in time O(`).
Thus, each loop iteration takes time O(`), and hence the total running-time of this division with
remainder algorithm is O(m`).

We now summarize the above observations. For an integer n, we define L(n) to be the number
of bits in the binary representation of |n|; more precisely,

L(n) =
{
blog2 |n|c+ 1 if n 6= 0,
1 if n = 0.
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Notice that for n > 0, log2 n < L(n) ≤ log2 n+ 1.

Theorem 3.2 Let a and b be arbitrary integers, represented using the data structures described
above.

(i) We can determine an arbitrary bit in the binary representation of |a| in time O(1).

(ii) We can compute a± b in time O(L(a) + L(b)).

(iii) We can compute a · b in time O(L(a)L(b)).

(iv) If b > 0, we can compute q and r such that a = bq + r and 0 ≤ r < b in time O(L(b)L(q)).

From now on, we shall not worry about the implementation details of long-integer arithmetic,
and will just refer directly this theorem.

Note the bound O(L(b)L(q)) in part (iv) of this theorem, which may be significantly less than
the bound O(L(a)L(b)).

This theorem does not refer to the base B in the underlying implementation. The choice of B
affects the values of the implied big-‘O’ constants; while in theory, this is of no significance, it does
have a significant impact in practice.

We should point out that the algorithms discussed here for integer multiplication and division
with remainder are by no means the best possible. If a and b are two integers whose length in bits is
bounded by k, then the fastest known algorithm for computing ab runs in time O(k log k log log k).
The fastest known algorithm to divide a by b also runs in time O(k log k log log k). We shall not
discuss such fast algorithms any further here, even though in practice, they do indeed play a
significant role, at least for numbers of more than a few hundred bits in length.

3.3 Greatest Common Divisors

We consider the following problem: given two positive integers a and b, compute gcd(a, b). We can
do this using the well-known algorithm of Euclid, which is described in the following theorem.

Theorem 3.3 Let a ≥ b > 0. Define the numbers r0, r1, . . . , r`+1, and q1, . . . , q`, where ` ≥ 1, as
follows:

r0 = a,

r1 = b,

r0 = r1q1 + r2 (0 < r2 < r1),
...

ri−1 = riqi + ri+1 (0 < ri+1 < ri),
...

r`−2 = r`−1q`−1 + r` (0 < r` < r`−1),
r`−1 = r`q` (r`+1 = 0).

Then r` = gcd(a, b) and ` ≤ log b/ log φ+ 1, where φ = (1 +
√

5)/2 ≈ 1.62.
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Proof. For the first statement, one sees that for 1 ≤ i ≤ `, the common divisors of ri−1 and ri are
the same as the common divisors of ri and ri+1, and hence gcd(ri−1, ri) = gcd(ri, ri+1). From this,
it follows that gcd(a, b) = gcd(r0, r1) = gcd(r`, 0) = r`.

To prove the second statement, we claim that for 0 ≤ i ≤ `− 1, r`−i ≥ φi. The statement will
then follow by setting i = `− 1 and taking logarithms.

If ` = 1, the claim is obviously true, so assume ` > 1. We have r` ≥ 1 = φ0 and r`−1 ≥ r` + 1 ≥
2 ≥ φ1. For 2 ≤ i ≤ `− 1, using induction and applying the fact the φ2 = φ+ 1, we have

r`−i ≥ r`−(i−1) + r`−(i−2) ≥ φi−1 + φi−2 = φi−2(1 + φ) = φi,

which proves the claim. 2

Example 3.1 Suppose a = 100 and b = 35. Then the numbers appearing in Theorem 3.3 are
easily computed as follows:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6

So we have gcd(a, b) = r3 = 5. 2

We can easily turn the scheme described in Theorem 3.3 into a simple algorithm as follows:

while b 6= 0 do
Compute q, r such that a = bq + r, with 0 ≤ r < b
(a, b)← (b, r)

output a

By Theorem 3.3, this algorithm, known as Euclid’s algorithm, outputs the greatest common
divisor of a and b.

Theorem 3.4 Euclid’s algorithm runs in time O(L(a)L(b)).

Proof. The running time is O(τ), where τ =
∑`

i=1 L(ri)L(qi). We have

τ ≤ L(b)
∑
i

L(qi) ≤ L(b)
∑
i

(log2 qi + 1) = L(b)(`+ log2(
∏
i

qi)).

Note that
a = r0 ≥ r1q1 ≥ r2q2q1 ≥ · · · ≥ r`q` · · · q1 ≥ q` · · · q1.

We also have ` ≤ log b/ log φ+ 1. Combining this with the above, we have

τ ≤ L(b)(log b/ log φ+ 1 + log2 a) = O(L(a)L(b)),

which proves the theorem. 2

Let d = gcd(a, b). We know that there exist integers s and t such that as + bt = d. The
extended Euclidean algorithm, which we now describe, allows us to compute s and t.
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Theorem 3.5 Let a, b, r0, r1, . . . , r`+1, and q1, . . . , q` be as in Theorem 3.3. Define integers
s0, s1, . . . , s`+1 and t0, t1, . . . , t`+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for 1 ≤ i ≤ `,
si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then

(i) for 0 ≤ i ≤ `+ 1, we have sia+ tib = ri; in particular, s`a+ t`b = gcd(a, b);

(ii) for 0 ≤ i ≤ `, we have siti+1 − tisi+1 = (−1)i;

(iii) for 0 ≤ i ≤ `+ 1, we have gcd(si, ti) = 1;

(iv) we have |s`+1| ≤ b and |t`+1| ≤ a;

(v) for 0 ≤ i ≤ `, we have |ti| ≤ |ti+1|, and for 1 ≤ i ≤ `, we have |si| ≤ |si+1|;

(vi) for 0 ≤ i ≤ `+ 1, we have |si| ≤ b and |ti| ≤ a.

Proof. (i) and (ii) are easily proved by induction on i (exercise).
(iii) follows directly from (ii).
To prove (iv), note that s`+1a + t`+1b = r`+1 = 0. We have t`+1 6= 0, since otherwise, both

s`+1 and t`+1 would be zero, contradicting (ii). This implies that t`+1/s`+1 = −a/b, and then (iv)
follows from the fact (iii) that gcd(s`+1, t`+1) = 1.

For (v), one proves the statement for the ti by induction, but with the stronger hypothesis that
titi+1 ≤ 0 (i.e., the sign alternates) and |ti| ≤ |ti+1| for 0 ≤ i ≤ ` (exercise). One argues similarly
for the statement for the si.

(vi) follows immediately from (iv) and (v). 2

Example 3.2 We continue with Example 3.1. The numbers si and ti are easily computed from
the qi:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6
si 1 0 1 -1 7
ti 0 1 -2 3 -20

2

We can easily turn the scheme described in Theorem 3.5 into a simple algorithm, as follows:

s← 1, t← 0
s′ ← 0, t′ ← 1
while b 6= 0 do

Compute q, r such that a = bq + r, with 0 ≤ r < b
(s, t, s′, t′)← (s′, t′, s− s′q, t− t′q)
(a, b)← (b, r)

output a, s, t
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This algorithm, known as the extended Euclidean algorithm, computes the greatest common
divisor d of a and b, together with s and t such that as+ bt = d.

Theorem 3.6 The extended Euclidean algorithm runs in time O(L(a)L(b)).

Proof. It suffices to analyze the cost of computing the sequences {si} and {ti}. Consider first the
cost of computing all of the ti, which is O(τ), where τ =

∑`
i=1 L(ti)L(qi). By Theorem 3.5 part

(vi), and arguing as in the proof of Theorem 3.4, we have

τ = L(q1) +
∑̀
i=2

L(ti)L(qi) ≤ L(q1) + L(a)(`− 1 + log2(
∏̀
i=2

qi))

= O(L(a)L(b)),

using the fact that
∏`
i=2 qi ≤ b. An analogous argument shows that one can compute all of the si

also in time O(L(a)L(b)), and in fact, in time O(L(b)2). 2

We should point out that the Euclidean algorithm is not the fastest known algorithm for com-
puting greatest common divisors. The asymptotically fastest known algorithm for computing the
greatest common divisor of two numbers of bit length at most k runs in time O(k(log k)2 log log k).
One can also compute the corresponding values s and t within this time bound as well. Fast algo-
rithms for greatest common divisors are not of much practical value, unless the integers involved
are very large — at least several tens of thousands of bits in length.

3.4 Computing in Zn

Let n > 1. For computational purposes, we may represent elements of Zn as elements of the set
{0, . . . , n− 1}.

Addition and subtraction in Zn can be performed in time O(L(n)). Multiplication can be
performed in time O(L(n)2) with an ordinary integer multiplication, followed by a division with
remainder.

Given a ∈ {0, . . . , n−1}, we can determine if [a mod n] has a multiplicative inverse in Zn, and if
so, determine this inverse, in time O(L(n)2) by applying the extended Euclidean algorithm. More
precisely, we run the extended Euclidean algorithm to determine integers d, s, and t, such that
d = gcd(n, a) and ns + at = d. If d 6= 1, then [a mod n] is not invertible; otherwise, [a mod n] is
invertible, and [t mod n] is its inverse. In the latter case, by part (vi) of Theorem 3.5, we know
that |t| ≤ n; we cannot have t = ±n, and so either t ∈ {0, . . . , n− 1}, or t+ n ∈ {0, . . . , n− 1}.

Another interesting problem is exponentiation modulo n: given a ∈ {0, . . . , n − 1} and a non-
negative integer e, compute y = ae rem n. Perhaps the most obvious way to do this is to it-
eratively multiply by a modulo n, e times, requiring time O(eL(n)2). A much faster algorithm,
the repeated-squaring algorithm, computes y = ae rem n using just O(L(e)) multiplications
modulo n, thus taking time O(L(e)L(n)2).

This method works as follows. Let e = (b`−1 · · · b0)2 be the binary expansion of e (where b0 is the
low-order bit). For 0 ≤ i ≤ `, define ei = (b`−1 · · · bi)2. Also define, for 0 ≤ i ≤ `, yi = aei rem n,
so y` = 1 and y0 = y. Then we have

ei = 2ei+1 + bi (0 ≤ i < `),
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and hence
yi = y2

i+1 · abi rem n (0 ≤ i < `).

This idea yields the following algorithm:

y ← 1
for i← `− 1 down to 0 do

y ← y2 rem n
if bi = 1 then y ← y · a rem n

output y

It is clear that when this algorithm terminates, y = ae rem n, and that the running-time
estimate is as claimed above.

We close this chapter by observing that the Chinese Remainder Theorem (Theorem 2.6) can
be made computationally effective as well. Indeed, by just using the formulas in the proof of that
theorem, we see that given integers n1, . . . , nk, and a1, . . . , ak, with ni > 1, gcd(ni, nj) = 1 for
i 6= j, and 0 ≤ ai < ni, we can compute x such that 0 ≤ x < n and x ≡ ai (mod ni) in time
O(L(n)2), where n =

∏
i ni. We leave the details of this as an easy exercise.
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Chapter 4

Abelian Groups

This chapter reviews the notion of an abelian group.

4.1 Definitions, Basic Properties, and Some Examples

Definition 4.1 An abelian group is a set G together with a binary operation ? on G such that

1. for all a, b ∈ G, a ? b = b ? a (commutivity property),

2. for all a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c (associativity property),

3. there exists e ∈ G (called the identity element) such that for all a ∈ G, a ? e = a (identity
property),

4. for all a ∈ G there exists a′ ∈ G such that a ? a′ = e (inverse property).

Before looking at examples, let us state some very basic properties of abelian groups that follow
directly from the definition.

Theorem 4.2 Let G be an abelian group with operator ?. Then we have

1. the identity element is unique, i.e., there is only one element e ∈ G such that a ? e = a for
all a ∈ G;

2. inverses are unique, i.e., for all a ∈ G, there is only one element a′ ∈ G such that a ? a′ is
the identity.

Proof. Suppose e, e′ are identities. Then since e is an identity, by the identity property in the
definition, we have e′ ? e = e′. Similarly, since e′ is an identity, we have e ? e′ = e. By the
commutivity property, we have e ? e′ = e′ ? e. Thus,

e′ = e′ ? e = e,

and so we see that there is only one identity.
Now let a ∈ G, and suppose that a?a′ = e and a?a′′ = e. Now, a?a′ = e implies a′′ ? (a?a′) =

a′′ ? e. Using the associativity and commutivity properties, the left-hand side can be written
a′ ? (a ? a′′), and by the identity property, the right-hand side can be written a′′. Thus, we have
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a′ ? (a ? a′′) = a′′. This, together with the equation a ? a′′ = e implies that a′ ? e = a′′, and again
applying the identity property, we have a′ = a′′. That proves a has only one inverse. 2

The above proof was very straightforward, yet quite tedious if one fills in all the details. In the
sequel, we shall leave proofs of this type as exercises for the reader.

There are many examples of abelian groups.

Example 4.1 The set of integers Z under addition forms an abelian group, with 0 being the
identity, and −a being the inverse of a ∈ Z. 2

Example 4.2 For integer n, the set nZ = {nz : z ∈ Z} under addition forms as abelian group,
again, with 0 being the identity, and n(−z) being the inverse of nz. 2

Example 4.3 The set of non-negative integers under addition does not form an abelian group,
since inverses do not exist for integers other than 0. 2

Example 4.4 The set of integers under multiplication does not form an abelian group, since
inverses do not exist for integers other than ±1. 2

Example 4.5 The set of integers {±1} under multiplication forms an abelian group, with 1 being
the identity, and −1 is its own inverse. 2

Example 4.6 The set of rational numbers Q = {a/b : a, b ∈ Z, b 6= 0} under addition forms an
abelian group, with 0 being the identity, and (−a)/b being the inverse of a/b. 2

Example 4.7 The set of non-zero rational numbers Q∗ under multiplication forms a group, with
1 being the identity, and b/a being the inverse of a/b. 2

Example 4.8 The set Zn under addition forms an abelian group, where [0 mod n] is the identity,
and where [−a mod n] is the inverse of [a mod n]. 2

Example 4.9 The set Z∗n of residue classes [a mod n] with gcd(a, n) = 1 under multiplication
forms an abelian group, where [1 mod n] is the identity, and if as + nt = 1, then [s mod n] is the
inverse of [a mod n]. Z∗n is called the multiplicative group of units modulo n. 2

Example 4.10 Continuing the previous example, let us set n = 15, and enumerate the elements
of Z∗15. They are

[1], [2], [4], [7], [8], [11], [13], [14].

An alternative enumeration is
[±1], [±2], [±4], [±7].

2

Example 4.11 As another special case, consider Z∗5. We can enumerate the elements of this groups
as

[1], [2], [3], [4]

or alternatively as
[±1], [±2].

2

20



Example 4.12 For any positive integer n, the set of n-bit strings under the “exclusive or” operator
forms an abelian group, where every bit string is its own inverse. 2

From the above examples, one can see that a group may be infinite or finite. In any case, the
order of a group is defined to be the cardinality |G| of the underlying set G defining the group.

Example 4.13 The order of Zn is n. 2

Example 4.14 The order of Z∗p for prime p is p− 1. 2

Note that in specifying a group, one must specify both the underlying set G as well as the
binary operation; however, in practice, the binary operation is often implicit from context, and by
abuse of notation, one often refers to G itself as the group.

Usually, instead of using a special symbol like ? for an abelian group operator, one instead uses
the usual addition (“+”) or multiplication (“·”) operators.

If an abelian group G is written additively, then the identity element is denoted by 0G (or just
0 if G is clear from context), and the inverse of an element a ∈ G is denoted by −a. For a, b ∈ G,
a− b denotes a+ (−b). If n is a positive integer, then n · a denotes a+ a+ · · ·+ a, where there are
n terms in the sum. Moreover, if n = 0, then n · a denotes 0, and if n is a negative integer then
n · a denotes −((−n) · a).

If an abelian group G is written multiplicatively, then the identity element is denoted by 1G (or
just 1 if G is clear from context), and the inverse of an element a ∈ G is denoted by a−1 or 1/a. As
usual, one may write ab in place of a · b. For a, b ∈ G, a/b denotes a · b−1. If n is a positive integer,
then an denotes a · a · · · · · a, where there are n terms in the product. Moreover, if n = 0, then an

denotes 1, and if n is a negative integer, then an denotes (a−n)−1.
For any particular, concrete abelian group, the most natural choice of notation is clear; however,

for a “generic” group, the choice is largely a matter of taste. By convention, whenever we consider
a “generic” abelian group, we shall use additive notation for the group operation, unless otherwise
specified.

We now record a few simple but useful properties of abelian groups.

Theorem 4.3 Let G be an abelian group. Then

1. for all a, b, c ∈ G, if a+ b = a+ c, then b = c;

2. for all a, b ∈ G, the equation a+ x = b in x has a unique solution in G;

3. for all a, b ∈ G, −(a+ b) = (−a) + (−b);

4. for all a ∈ G, −(−a) = a;

5. for all a ∈ G and all n ∈ Z, (−n)a = −(na) = n(−a).

Proof. Exercise. 2

If G1, . . . , Gk are abelian groups, we can form the direct product G1×· · ·×Gk, which consists
of all k-tuples (a1, . . . , ak) for a1 ∈ G1, . . . , ak ∈ Gk. We can view G1 × · · · ×Gk in a natural way
as an abelian group if we define the group operation “component wise”:

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk).
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Of course, the groups G1, . . . , Gk may be different, and the group operation applied in the ith
component corresponds to the group operation associated with Gi. We leave it to the reader to
verify that G1 × · · · ×Gk is in fact an abelian group.

In these notes, we have chosen only to discuss the notion of an abelian group. There is a more
general notion of a group, which may be defined simply by dropping the commutivity condition
in Definition 4.1, but we shall not need this notion in these notes, and restricting to abelian
groups helps to simplify the discussion significantly. Nevertheless, many of the notions and results
we discuss here regarding abelian groups extend (sometimes with slight modification) to general
groups.

Example 4.15 The set of 2 × 2 integer matrices with determinant ±1 with respect to matrix
multiplication forms a group, but not an abelian group. 2

4.2 Subgroups

We next introduce the notion of a subgroup.

Definition 4.4 Let G be an abelian group, and let H be a non-empty subset of G such that

• for all a, b ∈ H, a+ b ∈ H, and

• for all a ∈ H, −a ∈ H.

Then H is called a subgroup of G.

Theorem 4.5 If G is an abelian group, and H is a subgroup, then the binary operation of G defines
a binary operation on H, and with respect to this binary operation, H forms an abelian group whose
identity is the same as that of G.

Proof. Exercise. 2

Clearly, for an abelian group G, the subsets G and {0G} are subgroups. An easy way to find
other, more interesting, subgroups within an abelian group is by using the following theorem:

Theorem 4.6 Let G be an abelian group, and let m be an integer. Then mG := {ma : a ∈ G} is
a subgroup of G.

Proof. For ma,mb ∈ mG, we have ma+mb = m(a+ b) ∈ mG, and −(ma) = m(−a) ∈ mG. 2

Multiplicative notation: if the abelian group G in the above theorem is written using multiplica-
tive notation, then we write the subgroup of that theorem Gm := {am : a ∈ G}.

Example 4.16 For every integer m, the set mZ is a subgroup of the group Z. 2

Example 4.17 Let n be a positive integer, and let m ∈ Z. By the above theorem, mZn is a
subgroup of Zn; however, we wish to give an explicit description of this subgroup. Consider a
fixed residue class [a] for a ∈ Z. Now, [a] ∈ mZn if and only if there exists x ∈ Z such that
mx ≡ a (mod n). By Theorem 2.5, such an x exists if and only if d | a, where d = gcd(m,n). Thus,
mZn = dZn, and consists precisely of the n/d distinct residue classes

[i · d] (i = 0, . . . , n/d− 1).

2
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Because the abelian groups Z and Zn are of such importance, it is a good idea to completely
characterize all subgroups of these abelian groups. As the following two theorems show, the sub-
groups in the above examples are the only subgroups of these groups.

Theorem 4.7 If G is a subgroup of Z, then there exists a unique non-negative integer m such that
G = mZ.

Proof. Actually, we have already proven this. One only needs to observe that a subset G is a
subgroup if and only if it is an ideal (as defined in §1.2), and then apply Theorem 1.4. 2

Theorem 4.8 If G is a subgroup of Zn, then there exists a unique positive integer m dividing n
such that G = mZn.

Proof. Let G be a subgroup of Zn. Define G′ := {a ∈ Z : [a] ∈ G}. It is easy to see that
G = {[a] : a ∈ G′}.

First, we claim that G′ is a subgroup of Z. Suppose that a, b ∈ G′. This means that [a] ∈ G
and [b] ∈ G, which implies that [a+ b] = [a] + [b] ∈ G, and hence a+ b ∈ G′. Similarly, if [a] ∈ G,
then [−a] = −[a] ∈ G, and hence −a ∈ G′.

By the previous theorem, it follows that G′ is of the form mZ for some non-negative integer m.
Moreover, note that n ∈ G′, since [n] = [0] is the identity element of Zn, and hence belongs to G.
Therefore, m | n.

So we have G = {[a] : a ∈ mZ} = mZn.
From the observations in Example 4.17, the uniqueness of m is clear. 2

Of course, not all abelian groups have such a simple subgroup structure.

Example 4.18 Consider the group G = Z2×Z2. For any non-zero α ∈ G, α+α = 0G. From this,
it is easy to see that the set H = {0G, α} is a subgroup of G. However, for any integer m, mG = G
if m is odd, and mG = {0G} if m is even. Thus, the subgroup H is not of the form mG for any m.
2

Example 4.19 Consider the group Z∗n discussed in Example 4.9. The subgroup (Z∗n)2 plays an
important role in some situations. Integers a such that [a] ∈ (Z∗n)2 are called quadratic residues
modulo n. 2

Example 4.20 Consider again the group Z∗n, for n = 15, discussed in Example 4.10. As discussed
there, we have Z∗15 = {[±1], [±2], [±4], [±7]}. Therefore, the elements of (Z∗15)2 are

[1]2 = [1], [2]2 = [4], [4]2 = [16] = [1], [7]2 = [49] = [4];

thus, (Z∗15)2 has order 2, consisting as it does of the two distinct elements [1] and [4].
Going further, one sees that (Z∗15)4 = {[1]}. Thus, α4 = [1] for all α ∈ Z∗15.
By direct calculation, one can determine that (Z∗15)3 = Z

∗
15; that is, cubing simply permutes

Z
∗
15.

For any integer m, write m = 4q + r, where 0 ≤ r < 4. Then for any α ∈ Z∗15, we have
αm = α4q+r = α4qαr = αr. Thus, (Z∗15)m is either Z∗15, (Z∗15)2, or {[1]}.

However, there are certainly other subgroups of Z∗15 — for example, the subgroup {[±1]}. 2
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Example 4.21 Consider again the group Z
∗
5 from Example 4.11. As discussed there, Z∗5 =

{[±1], [±2]}. Therefore, the elements of (Z∗5)2 are

[1]2 = [1], [2]2 = [4] = [−1];

thus, (Z∗5)2 = {[±1]} and has order 2.
There are in fact no other subgroups of Z∗5 besides Z∗5, {[±1]]}, and {[1]}. Indeed, if H is a

subgroup containing [2], then we must have H = Z
∗
5: [2] ∈ H implies [2]2 = [4] = [−1] ∈ H, which

implies [−2] ∈ H as well. The same holds if H is a subgroup containing [−2]. 2

If G is an abelian group, and H1 and H2 are subgroups, we define H1 +H2 := {h1 + h2 : h1 ∈
H1, h2 ∈ H2}. Note that H1 +H2 contains H1 ∪H2.

Multiplicative notation: if G is written multiplicatively, then we write H1 ·H2 := {h1h2 : h1 ∈
H1, h2 ∈ H2}.

Theorem 4.9 If H1 and H2 are subgroups of an abelian group G, then so is H1 +H2. Moreover,
any subgroup H of G that contains H1 ∪ H2 contains H1 + H2, and H1 ⊂ H2 if and only if
H1 +H2 = H2.

Proof. Exercise. 2

Theorem 4.10 If H1 and H2 are subgroups of an abelian group G, then so is H1 ∩H2.

Proof. Exercise. 2

Theorem 4.11 If H ′ is a subgroup of an abelian group G, then a set H ⊂ H ′ is a subgroup of G
if and only if H is a subgroup of H ′.

Proof. Exercise. 2

4.3 Cosets and Quotient Groups

We now generalize the notion of a congruence relation.
Let G be an abelian group, and let H be a subgroup. For a, b ∈ G, we write a ≡ b (mod H) if

a− b ∈ H.
It is easy to verify that the relation · ≡ · (mod H) is an equivalence relation; that is, for all

a, b, c ∈ G, we have

• a ≡ a (mod H),

• a ≡ b (mod H) implies b ≡ a (mod H),

• and a ≡ b (mod H) and b ≡ c (mod H) implies a ≡ c (mod H).

Therefore, this relation partitions G into equivalence classes. It is easy to see that for any a ∈ G,
the equivalence class containing a is precisely a + H := {a + h : h ∈ H}; indeed, a ≡ b (mod H)
⇐⇒ b− a = h for some h ∈ H ⇐⇒ b = a+ h for some h ∈ H ⇐⇒ b ∈ a+H. The equivalence
class a+H is called the coset of H in G containing a, and an element of such a coset is called
a representative of the coset.

Multiplicative notation: if G is written multiplicatively, then a ≡ b (mod H) means a/b ∈ H,
and the coset of H in G containing a is aH := {ah : h ∈ H}.
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Example 4.22 Let G = Z and H = nZ for some positive integer n. Then a ≡ b (mod H) if and
only if a ≡ b (mod n). 2

Example 4.23 Let G = Z4 and let H be the subgroup 2Z4 = {[0], [2]}. The coset of H containing
[1] is {[1], [3]}. These are all the cosets of H in G. 2

Theorem 4.12 Any two cosets of a subgroup H in an abelian group G have equal cardinality; i.e.,
there is a bijective map from one coset to the other.

Proof. Let a+H and b+H be two cosets, and consider the map f : G→ G that sends x ∈ G to
x− a+ b ∈ G. The reader may verify that f is injective and carries a+H onto b+H. 2

An incredibly useful consequence of the above theorem is:

Theorem 4.13 If G is a finite abelian group, and H is a subgroup of G, then the order of H
divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and the fact that the cosets of
H in G partition G. 2

Analogous to Theorem 2.1, we have:

Theorem 4.14 Let G be an abelian group and H a subgroup. For a, a′, b, b′ ∈ G, if a ≡ a′ (mod H)
and b ≡ b′ (mod H), then a+ b ≡ a′ + b′ (mod H).

Proof. Now, a ≡ a′ (mod H) and b ≡ b′ (mod H) means that a′ = a + h1 and b′ = b + h2 for
h1, h2 ∈ H. Therefore, a′ + b′ = (a+ h1) + (b+ h2) = (a+ b) + (h1 + h2), and since h1 + h2 ∈ H,
this means that a+ b ≡ a′ + b′ (mod H). 2

Let G be an abelian group and H a subgroup. Theorem 4.14 allows us to define a group
operation on the collection of cosets of H in G in the following natural way: for a, b ∈ G, define

(a+H) + (b+H) := (a+ b)H.

The fact that this definition is unambiguous follows immediately from Theorem 4.14. Also, one
can easily verify that this operation defines an abelian group. The resulting group is called the
quotient group of G modulo H, and is denoted G/H.

The order of the group G/H is sometimes denoted [G : H] and is called the index of H in G.
If G is of finite order, then by Theorem 4.12, [G : H] = |G|/|H|.

Multiplicative notation: if G is written multiplicatively, then the definition of the group opera-
tion of G/H is expressed

(aH) · (bH) := (ab)H.

Theorem 4.15 If H ⊂ H ′ are subgroups of an abelian group G, and [G : H] is finite, then
[G : H] = [G : H ′] · [H ′ : H].

Proof. Exercise. 2
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Example 4.24 For the additive group of integers Z and the subgroup nZ for n > 0, the quotient
group Z/nZ is precisely the same as the additive group Zn that we have already defined. For n = 0,
Z/nZ is essentially just a “renaming” of Z. 2

Example 4.25 Let us return to Example 4.20. The multiplicative group Z∗15, as we saw, is of
order 8. The subgroup (Z∗15)2 has order 2. Therefore, the quotient group has order 4. Indeed, the
cosets are α00 = {[1], [4]}, α01 = {[−1], [−4]}, α10 = {[2], [−7]}, and α11 = {[7], [−2]}. In the group
Z
∗
15/(Z

∗
15)2, α00 is the identity; moreover, we have

α2
01 = α2

10 = α2
11 = α00

and
α01α10 = α11, α10α11 = α01, α10α11 = α01.

This completely describes the behavior of the group operation of the quotient group. Note that
this group is essentially just a “renaming” of the group Z2 × Z2. 2

Example 4.26 As we saw in Example 4.21, (Z∗5)2 = {[±1]}. Therefore, the quotient group
Z
∗
5/(Z

∗
5)2 has order 2. The cosets of (Z∗5)2 in Z∗5 are {[±1]} and {[±2}. 2

4.4 Group Homomorphisms and Isomorphisms

Definition 4.16 A homomorphism from an abelian group G to an abelian group G′ is a function
f : G→ G such that f(a+ b) = f(a) + f(b) for all a, b ∈ G.

The set f−1(1G′) is called the kernel of f , and is denoted ker(f). The set f(G) is called the
image of f .

If f is bijective, then f is called an isomorphism of G with G′.

It is easy to see that if f is an isomorphism of G with G′, then the inverse function f−1 is an
isomorphism of G′ with G. If such an isomorphism exists, we say that G and G′ are isomorphic,
and write G ∼= G′. we stress that an isomorphism of G with G′ is essentially just a “renaming” of
the group elements — all structural properties of the group are preserved.

Theorem 4.17 Let f be a homomorphism from an abelian group G to an abelian group G′.

1. f(0G) = 0G′.

2. f(−a) = −f(a) for all a ∈ G.

3. f(na) = nf(a) for all n ∈ Z and a ∈ G.

4. For any subgroup H of G, f(H) is a subgroup of G′.

5. ker(f) is a subgroup of G.

6. For all a, b ∈ G, f(a) = f(b) if and only if a ≡ b (mod ker(f)).

7. f is injective if and only if ker(f) = {0G}.

8. For any subgroup H ′ of G′, f−1(H ′) is a subgroup of G containing ker(f).

9. For any subgroup H of G, f−1(f(H)) = H + ker(f).
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Proof. Exercise. 2

Part (7) of the above theorem is particular useful: to check that a homomorphism is injective,
it suffices to determine if ker(f) = {0G}.

The following theorems, while very simple to prove, are also very useful.

Theorem 4.18 If H is a subgroup of an abelian group G, then the map f : G → G/H given
by f(a) = a + H is a surjective homomorphism whose kernel is H. This is sometimes called the
“natural” map from G to G/H.

Proof. Exercise. 2

Theorem 4.19 Let G and G′ be abelian groups. Let f be a homomorphism from G into G′. Then
the map f̄ : G/ ker(f)→ f(G) that sends the coset a+ ker(f) for a ∈ G to f(a) is unambiguously
defined and is an isomorphism of G/ ker(f) with f(G).

Proof. Exercise. 2

Theorem 4.20 Let G and G′ be abelian groups. Let f be a homomorphism from G into G′. The
subgroups of G containing ker(f) are in one-to-one correspondence with the subgroups of f(G),
where the the subgroup H in G containing ker(f) corresponds to the subgroup f(H) in f(G).

Proof. Exercise. 2

Theorem 4.21 Let G be an abelian group with subgroups H1,H2 such that H1∩H2 = {0G}. Then
the map that sends (h1, h2) ∈ H1 ×H2 to h1 + h2 ∈ H1 + H2 is an isomorphism of H1 ×H2 with
H1 +H2.

Proof. Exercise. 2

Example 4.27 For any abelian group G and any integer m, the map that sends a ∈ G to ma ∈ G
is clearly a homomorphism from G into G. The image of this homomorphism is mG. We call this
map the m-multiplication map on G. If G is written multiplicatively, we call this the m-power
map on G. 2

Example 4.28 Consider the m-multiplication map on Z. The image of this map is mZ, and the
kernel is {0} if m 6= 0, and is Z if m = 0. 2

Example 4.29 Consider the m-multiplication map on Zn. The image of this map is mZn, which
as we saw above in Example 4.17 is a subgroup of Zn of order n/d, where d = gcd(n,m). Thus,
this map is bijective if and only if d = 1, in which case it is an isomorphism of Zn with itself. 2

Example 4.30 For positive integer n, consider the natural map f : Z → Z/nZ = Zn. Theo-
rem 4.20 says that this map gives a one-to-one correspondence between the subgroups of Z con-
taining nZ and the subgroups of Zn. Moreover, it follows from Theorem 4.7 that the subgroups
of Z containing nZ are precisely mZ for m | n. From this, it follows that the subgroups of Zn are
precisely mZn for m | n. We already proved this in Theorem 4.8. 2

Example 4.31 As was demonstrated in Example 4.25, the quotient group Z∗15/(Z
∗
15)2 is isomorphic

to Z2 × Z2. 2
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Example 4.32 Let G1, G2 be abelian groups. The map that sends (a1, a2) ∈ G1 ×G2 to a1 ∈ G1

is a homomorphism from G1 ×G2 to G1. Its image is G1, and its kernel is {0G1} ×G2. 2

Example 4.33 If G = G1 × G2 for abelian groups G1 and G2, and H1 is a subgroup of G1 and
H2 is a subgroup of G2, then H := H1×H2 is a subgroup of G, and G/H ∼= G1/H1×G2/H2. 2

4.5 Cyclic Groups

Let G be an abelian group. For a ∈ G, define 〈a〉 := {za : z ∈ Z}. It is clear that 〈a〉 is a subgroup
of G, and moreover, that any subgroup H of G that contains a must also contain 〈a〉. The subgroup
〈a〉 is called the subgroup generated by a. Also, one defines the order of a to be the order of
the subgroup 〈a〉, which is denoted ord(a).

More generally, for a1, . . . , ak ∈ G, we define 〈a1, . . . , ak〉 := {z1a1 + · · ·+zkak : z1, . . . , zk ∈ Z}.
One also verifies that 〈a1, . . . , ak〉 is a subgroup of G, and that any subgroup H of G that contains
a1, . . . , ak must contain 〈a1, . . . , ak〉. The subgroup 〈a1, . . . , ak〉 is called the subgroup generated
by a1, . . . , ak.

An abelian group G is called a cyclic group if G = 〈a〉 for some a ∈ G, in which case, a is
called a generator for G.

Multiplicative notation: if G is written multiplicatively, then 〈a〉 := {az : z ∈ Z}, and
〈a1, . . . , ak〉 := {az11 · · · a

zk
k : z1, . . . , zk ∈ Z}.

Example 4.34 Z is a cyclic group generated by 1. The only other generator is −1. 2

Example 4.35 Zn is a cyclic group generated by [1 mod n]. More generally, 〈[m mod n]〉 = mZn,
and so is cyclic of order n/d, where d = gcd(m,n). 2

We can very quickly characterize all cyclic groups, up to isomorphism. Suppose that G is a
cyclic group with generator a. Consider the map f : Z→ G that sends z ∈ Z to za ∈ G. This map
is clearly a surjective homomorphism. Now, ker(f) is a subgroup of Z, and by Theorem 4.7, it must
be of the form nZ for some non-negative integer n. Also, by Theorem 4.19, we have Z/nZ ∼= G.

Case 1: n = 0. In this case, Z/nZ ∼= Z, and so we see G ∼= Z. Moreover, by Theorem 4.17, the
only integer z such that za = 0G is the integer 0, and more generally, z1a = z2a if and only
if z1 = z2.

Case 2: n > 0. In this case, Z/nZ = Zn, and so we see that G ∼= Zn. Moreover, by Theorem 4.17,
za = 0G if and only if n | z, and more generally, z1a = z2a if and only if z1 ≡ z2 (mod n).
The order of G is evidently n, and G consists of the distinct elements

0 · a, 1 · a, . . . , (n− 1) · a.

From this characterization, we immediately have:

Theorem 4.22 Let G be an abelian group and let a ∈ G. If there exists a positive integer m such
that ma = 0G, then the least such integer is the order of a. Moreover, if G of finite order n, then
ord(a) | n, and in particular na = 0G.
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Proof. The first statement follows from the above characterization. For the second statement,
since 〈a〉 is a subgroup of G, by Theorem 4.13, its order must divide that of G. Of course, if
ma = 0G, then for any multiple m′ of m (in particular, m′ = n), we also have m′a = 0G. 2

Based on the this theorem, we can trivially derive a classical result:

Theorem 4.23 (Fermat’s Little Theorem) For any prime p, and any integer x 6≡ 0 (mod p),
we have xp−1 ≡ 1 (mod p). Moreover, for any integer x, we have xp ≡ x (mod p).

Proof. The first statement follows from Theorem 4.22, and the fact that Since Z∗p is an abelian
group of order p− 1. The second statement is clearly true if x ≡ 0 (mod p), and if x 6≡ 0 (mod p),
we simply multiply both sides of the congruence xp−1 ≡ 1 (mod p) by x. 2

It also follows from the above characterization of cyclic groups that that any subgroup of a cyclic
group is cyclic — indeed, we have already characterized the subgroups of Z and Zn in Theorems
4.7 and 4.8, and it is clear that these subgroups are cyclic. Indeed, it is worth stating the following:

Theorem 4.24 Let G be a cyclic group of finite order n. Then the subgroups of G are in one-
to-one correspondence with the positive divisors of n, where each such divisor d corresponds to a
cyclic subgroup of Gd of order d. Moreover:

• Gd is the image of the (n/d)-multiplication map (or (n/d)-power map).

• Gd contains precisely those elements in G whose order divides d; i.e., Gd is the kernel of the
d-multiplication map (or d-power map, for multiplicative groups).

• Gd ⊃ Gd′ if and only if d | d′.

Proof. Since G ∼= Zn, this follows immediately from Theorem 4.8, and the discussion in Exam-
ple 4.17. We leave the details to the reader. 2

Example 4.36 Since mZn is cyclic of order n/d, where d = gcd(m,n), we have mZn ∼= Zn/d. 2

Example 4.37 Consider the group Zn1 ×Zn2 . For m ∈ Z, then the element m([1 mod n1], [1 mod
n2]) = ([0 mod n1], [0 mod n2]) if and only if n1 | m and n2 | m. This implies that ([1 mod
n1], [1 mod n2]) has order lcm(n1, n2). In particular, if gcd(n1, n2) = 1, then Zn1 × Zn2 is cyclic
of order n1n2, and so Zn1 × Zn2

∼= Zn1n2 . Moreover, if gcd(n1, n2) = d > 1, then all elements of
Zn1 × Zn2 have order dividing n1n2/d, and so Zn1 × Zn2 cannot be cyclic. 2

Example 4.38 As we saw in Example 4.20, all elements of Z∗15 have order dividing 4, and since
Z
∗
15 has order 8, we conclude that Z∗15 is not cyclic. 2

Example 4.39 The group Z∗5 is cyclic, with [2] being a generator:

[2]2 = [4] = [−1], [2]3 = [−2], [2]4 = [1].

2

Theorem 4.25 If G is a cyclic group, and f : G→ G′ is a homomorphism from G to the abelian
group G′, then f(G) is cyclic.
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Proof. Exercise. 2

Theorem 4.26 If G is a finite abelian group of order n, and m is an integer relatively prime to
n, then mG = G.

Proof. Consider the m-multiplication map on G.
We claim that the kernel of this map is {0G}. Indeed, ma = 0G, implies ord(a) divides m, and

since ord(a) also divides n and gcd(m,n) = 1, we must have ord(a) = 1, i.e., a = 0G. That proves
the claim.

Thus, the m-multiplication map is injective, and because G is finite, it must be surjective as
well. 2

Theorem 4.27 If G is an abelian group of prime order, then G is cyclic.

Proof. Let |G| = p. Let a ∈ G with a 6= 0G. Since ord(a) | p, we have ord(a) = 1 or ord(a) = p.
Since a 6= 0G, we must have ord(a) 6= 1, and so ord(a) = p, which implies a generates G. 2

Theorem 4.28 Suppose that a is an element of an abelian group, and for some prime p and e ≥ 1,
we have pea = 0G and pe−1a 6= 0G. Then a has order pe.

Proof. If m is the order of a, then since pea = 0G, we have m | pe. So m = pf for some 0 ≤ f ≤ e.
If f < e, then pe−1a = 0G, contradicting the assumption that pe−1a 6= 0G. 2

Theorem 4.29 Suppose G is an abelian group with a1, a2 ∈ G such that the a1 is of finite order
n1 and a2 is of finite order n2, and d = gcd(n1, n2). Then ord(a1 + a2) | n1n2/d. Moreover,
ord(a1 + a2) = n1n2 if and only if d = 1.

Proof. Since (n1n2/d)(a1 + a2) = (n2/d)(n1a1) + (n1/d)(n2a1) = 0G + 0G = 0G, the order of
a1 + a2 must divide n1n2/d. On the one hand, if d > 1, then clearly a1 + a2 cannot have order
n1n2. On the other hand, if d = 1, then m(a1 + a2) = 0G implies ma1 = −ma2; since −ma2 has
order dividing n2, so does ma1; also, ma1 has order dividing n1, and so we conclude that the order
of ma1 is 1, since n1 and n2 are relatively prime. That is, ma1 = 0G, from which it follows that
n1 | m. By a symmetric argument, one finds n2 | m, and again, as n1 and n2 are relatively prime,
this implies that n1n2 | m. That proves that ord(a1 + a2) = n1n2. 2

For an abelian group G, the exponent of G is defined to be the least positive integer m such
that mG = {0G} if such an integer exists, and is defined to be 0 otherwise.

We first state some basic properties.

Theorem 4.30 Let G be an abelian group of exponent m.

1. For any integer m′ such that m′G = {0G}, we have m | m′.

2. If G has finite order, then m divides |G|.

3. If m 6= 0, for any a ∈ G, the order of a is finite, and ord(a) | m.

Proof. Exercise. 2

Theorem 4.31 For finite abelian groups G1, G2 whose exponents are m1 and m2, the exponent of
G1 ×G2 is lcm(m1,m2).
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Proof. Exercise. 2

Theorem 4.32 If a finite abelian group G has exponent m, then G contains an element of order
m. In particular, a finite abelian group is cyclic if and only if its order equals its exponent.

Proof. The second statement follows immeditely from the first. For the first statement, assume
that m > 1, and let m =

∏r
i=1 p

ei
i be the prime factorization of m.

First, we claim that for each 1 ≤ i ≤ r, there exists ai ∈ G such that (m/pi)ai 6= 0G. Suppose
the claim were false: then for some i, (m/pi)a = 0G for all a ∈ G; however, this contradicts the
minimality property in the definition of the exponent m. That proves the claim.

Let a1, . . . , ar be as in the above claim. Then by Theorem 4.28, (m/peii )ai has order peii for each
1 ≤ i ≤ r. Finally, by Theorem 4.29, the group element

(m/pe11 )a1 + · · ·+ (m/perr )ar

has order m. 2

Theorem 4.33 If G is a finite abelian group of order n, and p is a prime dividing n, then G
contains an element of order p.

Proof. First, note that if G contains an element whose order is divisible by p, then it contains an
element of order p; indeed, if a has order mp, then ma has order p.

Let a1, . . . , an be an enumeration of all the elements of G, and consider the tower of subgroups

H0 := {0G}, Hi := 〈a1, . . . , ai〉 (i = 1, . . . , n).

We have

n = |Hn|/|H0| =
n∏
i=1

|Hi|/|Hi−1| =
n∏
i=1

|Hi/Hi−1|,

and therefore, for some 1 ≤ i ≤ n, p | |Hi/Hi−1|. Let k = |Hi/Hi−1|. Now, the quotient group
Hi/Hi−1 is clearly cyclic and is generated by the coset ai + Hi−1. Let k′ = ord(ai). Then k′(ai +
Hi−1) = k′ai +Hi−1 = 0G +Hi−1. Therefore, k | k′. That proves that p | ord(ai), so we are done.
2

With this last theorem, we can prove the converse of Theorem 4.26.

Theorem 4.34 If G is a finite abelian group of order n, and mG = G, then m is relatively prime
to n.

Proof. To the contrary, suppose that p is a prime dividing m and n. Then G contains an element of
order p by Theorem 4.33, and this element is in the kernel of the m-multiplication map. Therefore,
this map is not injective, and hence not surjective since G is finite. Thus, mG 6= G, a contradiction.
2
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4.6 The Structure of Finite Abelian Groups

We next state a theorem that characterizes all finite abelian groups up to isomorphism.

Theorem 4.35 (Fundamental Theorem of Finite Abelian Groups) A finite abelian group
(with more than one element) is isomorphic to a direct product of cyclic groups

Zp
e1
1
× · · · × Zperr ,

where the pi are primes (not necessarily distinct) and the ei are positive integers. This direct product
of cyclic groups is unique up to the order of the factors.

An alternative characterization of this theorem is the following:

Theorem 4.36 A finite abelian group (with more than one element) is isomorphic to a direct
product of cyclic groups

Zm1 × · · · × Zmt ,

where all mi > 1 and m1 | m2 | · · · | mt. Moreover, the integers m1, . . . ,mt are unique, and mt is
the exponent of the group.

Proof. This follows easily from Theorem 4.35 and Example 4.37. Details are left to the reader.
2

Note that Theorems 4.32 and 4.33 follow as easy corollaries of Theorem 4.35; however, the
direct proofs of those theorems are much simpler than the proof of Theorem 4.35.

The proof of Theorem 4.35 is a bit tedious, and we break it into three lemmas.

Lemma 4.37 Let G be a finite abelian group. Then G is isomorphic to a direct product of abelian
groups, each of whose exponent is a prime power.

Proof. Let m be the exponent of G. If m is a prime power, we are done. Otherwise, write
m = m1m2, where gcd(m1,m2) = 1, and 1 < m1,m2 < m. Consider the subgroups m1G and m2G.
Clearly, m1G has exponent m2 and m2G has exponent m1. Since gcd(m1,m2) = 1, m1G∩m2G =
{0G}. By Theorem 4.21, m1G1 ×m2G2

∼= m1G+m2G. Again, since gcd(m1,m2) = 1, there exist
integers x1, x2 such that m1x1 +m2x2 = 1. For any a ∈ G,

a = (m1x1 +m2x2)a = m1(x1a) +m2(x2a) ∈ m1G1 ×m2G,

and hence G = m1G1 × m2G2. Thus, we have an isomorphism of G with m1G1 × m2G2. The
lemma follows by induction on m. 2

Lemma 4.38 Let G be a finite abelian group of exponent pe for prime p and positive integer e.
Then there exist positive integers e1, . . . , ek such that G ∼= Zpe1 × · · · × Zpek .

Proof. The proof is a bit long.
Consider a sequence of group elements (a1, . . . , ak), with k ≥ 0, along with a corresponding

“tower” of subgroups

H0 := {0G}, Hi := 〈a1, . . . , ai〉 (i = 1, . . . , k).
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Let us call the sequence of (a1, . . . , ak) “good” if for 1 ≤ i ≤ k, there exists a positive integer ei
such that

peiai = 0G, pei−1ai /∈ Hi−1, and peia ∈ Hi−1 for all a ∈ G. (4.1)

Let us study some of the properties of a good sequence (a1, . . . , ak). To this end, for 0 ≤ i ≤ k,
and for a ∈ G, let us define ordi(a) to be the least positive integer m such that ma ∈ Hi. Clearly,
ord0(a) = ord(a), and ordi(a) is the order of the coset a + Hi in the quotient group G/Hi. Since
ord(a)a = 0G ∈ Hi, it follows that ordi(a) | ord(a) | pe.

From the definitions, it is clear that condition (4.1) above is equivalent to the condition

pei = ord(ai) = ordi−1(ai) = max{ordi−1(a) : a ∈ G}. (4.2)

Assume now that k > 0, and consider expressions of the form x1a1+· · ·+xkak, for x1, . . . , xk ∈ Z.
It is clear from the definition that every element of Hk can be expressed in this way.

Claim 1: x1a1 + · · ·+ xkak = 0G implies pei | xi for 1 ≤ i ≤ k.
To prove this claim, assume that x1a1 + · · · + xkak = 0G, and pej - xj for some j. Moreover,

assume that the index j is maximal, i.e., pej′ | xj′ for j < j′ ≤ k. Write xj = pfy, where
p - y and 0 ≤ f < ej , and let y′ be a multiplicative inverse of y modulo pej . Then we have
pfaj = −(y′x1a1 + · · · + y′xj−1aj−1) ∈ Hj−1, contradicting the assumption that pej−1aj /∈ Hj−1.
That proves the claim.

From this claim, it is easy to see that the map sending ([x1 mod pe1 ], . . . , [xk mod pek ]) to
x1a1 + · · ·+ xkak is an isomorphism of Zpe1 × · · · × Zpek with Hk. That the definition of this map
is unambiguous follows from the fact that ord(ai) = pei for 1 ≤ i ≤ k. Moreover, it is clear that
the the map is a surjective homomorphism, and by Claim 1, the kernel is trivial.

It is also clear that under this isomorphism, the subgroup Hi of Hk, for 1 ≤ i ≤ k, corresponds
to the subgroup of Zpe1 × · · ·×Zpek consisting of all k-tuples whose last k− i components are zero.

Next, assume that Hk ( G. We show how to extend a good sequence (a1, . . . , ak) to a good
sequence (a1, . . . , ak, ak+1) for some ak+1 ∈ G.

If k = 0, this is trivial: simply choose a1 to be an element of maximal order in G.
Now assume k > 0. Let us choose b ∈ G such that ordk(b) is maximal. Let ordk(b) = pf . Note

that f ≤ ei for 1 ≤ i ≤ k, since by definition, peib ∈ Hi−1 ⊂ Hk. In general, we have pf | ord(b),
and if pf = ord(b), then we can set ak+1 := b, and we are done. However, in general, we cannot
expect that pf = ord(b). Note, however, that ordk(b+h) = ordk(b) for all h ∈ Hk, so if we can find
h ∈ Hk such that pf (b+ h) = 0G, we will also be done.

Write pfb =
∑k

i=1 xiai for some integers xi. If we can find integers z1, . . . , zk such that pfzi+xi ≡
0 (mod pei) for 1 ≤ i ≤ k, then setting h :=

∑k
i=1 ziai, we see that

pf (b+ h) =
k∑
i=1

(pfzi + xi)ai = 0G,

and we will be done. Moreover, by Theorem 2.5, such integers z1, . . . , zk exist provided pf | xi for
1 ≤ i ≤ k.

Claim 2: If pfb =
∑k

i=1 xiai as above, then pf | xi for all 1 ≤ i ≤ k.
To prove this claim, assume that pf - xj for some j. Multiplying the equation pfb =

∑k
i=1 xiai

by pej−f , we see that pejb can be expressed as
∑k

i=1 x
′
iai, where pej - x′j . By Claim 1, it follows
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that pejb /∈ Hj−1, which contradicts the assumption that peja ∈ Hj−1 for all a ∈ G. That proves
the claim.

So we see that we can always extend a good sequence. Since G is finite, by starting with the
empty sequence, and extending it one element at a time, we will eventually find a good sequence
(a1, . . . , ak) such that Hk = G, and as we have seen above, Hk is isomorphic to Zpe1 × · · · × Zpek .

That proves the lemma. 2

These two lemmas prove the existence part of Theorem 4.35. The following lemma proves the
uniqueness part.

Lemma 4.39 Suppose that G ∼=×iZpie
i and G ∼=×jZqj

fj , for primes pi and qj. Then the prime

powers peii and qejj are the same, after re-ordering.

Proof. Clearly, |G| =
∏
i p
ei
i =

∏
j q

fj
j , and so the distinct primes appearing among the pi are the

same as the distinct primes appearing among the qj .
Now, fix a prime p dividing |G|, and for a ≥ 0, let Da(p) be the number of elements of G whose

order divides pa. Also, for k ≥ 1, let us define Mk(p) to be the number of indices i such that p = pi
and ei ≥ k, and similarly, Nk(p) to be the number of indices j such that p = qj and ej ≥ k. From
the isomorphism G ∼=×iZpie

i , it is easy to verify (exercise) that

Da(p) = p
∑a
k=1 Mk(p),

and similarly, from the isomorphism G ∼=×jZqj
fj , that

Da(p) = p
∑a
k=1 Nk(p).

It follows that for all a ≥ 0,
a∑
k=1

Mk(p) =
a∑
k=1

Nk(p),

from which it follows from a simple induction argument that Mk(p) = Nk(p) for all k ≥ 1. From
this, it is easy to verify (exercise) that the prime powers peii and qejj are the same, after re-ordering.
2

34



Chapter 5

Rings

This chapter reviews the notion of a ring, more specifically, a commutative ring with unity.

5.1 Definitions, Basic Properties, and Examples

Definition 5.1 A commutative ring with unity is a set R together with addition and multipli-
cation operators on R, such that

1. the set R under addition forms an abelian group, and we denote the additive identity by 0R;

2. multiplication is commutative, i.e., for all a, b ∈ R, we have ab = ba;

3. multiplication is associative, i.e., for all a, b, c ∈ R, we have a(bc) = (ab)c;

4. multiplication distributes over addition, i.e., for all a, b, c ∈ R, a(b+ c) = ab = ac;

5. there exists a non-zero multiplicative identity, i.e., there exists an element 1R ∈ R, with
1R 6= 0R, such that 1R · a = a for all a ∈ R.

There are other, more general (and less convenient) types of rings, but we will not be discussing
them here. Therefore, to simplify terminology, from now on we will refer to a commutative ring
with unity simply as a ring.

When there is no possibility for confusion, one may write “0” instead of “0R” and “1” instead
of “1R.”

We first state some simple facts which follow directly from the definition.

Theorem 5.2 Let R be a ring. Then

1. the multiplicative identity is unique;

2. 0R · a = 0R for all a ∈ R;

3. (−a)b = a(−b) = −(ab) for all a, b ∈ R;

4. (−a)(−b) = ab for all a, b ∈ R;

5. (na)b = a(nb) = n(ab) for all n ∈ Z and a, b ∈ R;

6. (
∑n

i=1 ai)(
∑m

j=1 bj) =
∑n

i=1

∑m
j=1 aibj for all ai, bj ∈ R.
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Proof. Exercise. 2

Example 5.1 The set Z under the usual rules of multiplication and addition forms a ring. 2

Example 5.2 For n > 1, the set Zn under the rules of multiplication and addition defined in §2.3
forms a ring. Note that Zn with n = 1 does not satisfy our definition, since our definition requires
that in a ring R, 1R 6= 0R, and in particular, R must contain at least two elements. Actually, if we
have an algebraic structure that satisfies all the requirements of a ring except that 1R = 0R, then
it is easy to see that R consists of the single element 0R, where 0R + 0R = 0R and 0R · 0R = 0R. 2

Example 5.3 The set Q of rational numbers under the usual rules of multiplication and addition
forms a ring. 2

Let R be a ring.
The characteristic of R is defined as the exponent of the underlying additive group. Alterna-

tively, the characteristic if the least positive integer m such that m · 1R = 0R, if such an m exists,
and is zero otherwise.

For a, b ∈ R, we say that b divides a, written b | a, if there exists c ∈ R such that a = bc, in
which case we say that b is a divisor of a.

Note that parts 1-5 of Theorem 1.1 holds for an arbitrary ring.

5.1.1 Units and Fields

Let R be a ring. We call u ∈ R a unit if it has a multiplicative inverse, i.e., if uu′ = 1R for some
u′ ∈ R. It is easy to see that the multiplicative inverse of u, if its exists, is unique, and we denote
it by u−1; also, for a ∈ R, we may write a/u to denote au−1. It is clear that a unit u divides every
a ∈ R.

We denote the set of units R∗. It is easy to verify that the set R∗ is closed under multiplication,
from which it follows that R∗ is an abelian group, called the multiplicative group of units of
R.

If R∗ contains all non-zero elements of R, then R is called a field.

Example 5.4 The only units in the ring Z are ±1. Hence, Z is not a field. 2

Example 5.5 For n > 1, the units in Zn are the residue classes [a mod n] with gcd(a, n) = 1. In
particular, if n is prime, all non-zero residue classes are units, and conversely, if n is composite,
some non-zero residue classes are not units. Hence, Zn is a field if and only if n is prime. 2

Example 5.6 Every non-zero element of Q is a unit. Hence, Q is a field. 2

5.1.2 Zero divisors and Integral Domains

Let R be a ring. An element a ∈ R is called a zero divisor if a 6= 0 and there exists non-zero
b ∈ R such that ab = 0R.

If R has no zero divisors, then it is called an integral domain. Put another way, R is an
integral domain if and only if ab = 0R implies a = 0R or b = 0R for all a, b ∈ R.

Note that if u is a unit in R, it cannot be a zero divisor (if ub = 0R, then multiplying both sides
of this equation by u−1 yields b = 0R). In particular, it follows that any field is an integral domain.
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Example 5.7 Z is an integral domain. 2

Example 5.8 For n > 1, Zn is an integral domain if and only if n is prime. In particular, if n is
composite, so n = n1n2 with 1 < n1, n2 < n, then [n1] and [n2] are zero divisors: [n1][n2] = [0], but
[n1] 6= [0] and [n2] 6= [0]. 2

Example 5.9 Q is an integral domain. 2

We have the following “cancellation law”:

Theorem 5.3 If R is a ring, and a, b, c ∈ R such that a 6= 0R and a is not a zero divisor, then
ab = ac implies b = c.

Proof. ab = bc implies a(b− c) = 0R. The fact that a 6= 0 and a is not a zero divisor implies that
we must have b− c = 0R, i.e., b = c. 2

Theorem 5.4 If D is an integral domain, then

1. for all a, b, c ∈ D, a 6= 0D and ab = ac implies b = c;

2. for all a, b ∈ D, a | b and b | a if and only if a = bc for c ∈ D∗.

Proof. The first statement follows immediately from the previous theorem and the definition of
an integral domain.

For the second statement, if a = bc for c ∈ D∗, then we also have b = ac−1; thus, b | a and a | b.
Conversely, a | b implies b = ax for x ∈ D, and b | a implies a = by for y ∈ D, and hence b = bxy.
Cancelling b, we have 1D = xy, and so x and y are units. 2

It follows from the above theorem that in an integral domain D, if a, b ∈ D with b 6= 0D and
b | a, then there is a unique c ∈ D such that a = bc, which we may denote as a/b.

5.1.3 Subrings

A subset R′ of a ring R is called a subring if

• R′ is an additive subgroup of R,

• R′ is closed under multiplication, i.e., ab ∈ R′ for all a, b ∈ R, and

• 1R ∈ R′.

Note that the requirement that 1R ∈ R′ is not redundant. Some authors do not make this
restriction.

It is clear that the operations of addition and multiplication on R make R′ itself into a ring,
where 0R is the additive identity of R′ and 1R is the multiplicative identity of R′.

Example 5.10 Z is a subring of Q. 2
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5.1.4 Direct products of rings

If R1, . . . , Rk are rings, then the set of all k-tuples (a1, . . . , ak) with ai ∈ Ri for 1 ≤ i ≤ k, with
addition and multiplication defined component-wise, forms a ring. The ring is denoted R1×· · ·×Rk,
and is called the direct product of R1, . . . , Rk.

Clearly, (a1, . . . , ak) is a unit (resp., zero divisor) in R1×· · ·×Rk if and only if each component
ai is a unit (resp., zero divisor) in Ri.

5.2 Polynomial rings

If R is a ring, then we can form the ring of polynomials R[T ], consisting of all polynomials∑k
i=0 aiT

i in the indeterminate (or variable) T , with coefficients in R, with addition and multipli-
cation being defined in the usual way: let a =

∑k
i=0 aiT

i and b =
∑`

i=0 biT
i; then

a+ b :=
max(k,`)∑
i=0

(ai + bi)T i,

where one interprets ai as 0R if i > k and bi as 0R if j > `, and

a · b :=
k+∑̀
i=0

ciT
i,

where ci :=
∑i

j=0 ajbi−j , and one interprets aj as 0R if j > k and bi−j as 0R if i− j > `.
For a =

∑k
i=0 aiT

i ∈ R[T ], if k = 0, we call a a constant polynomial, and if k > 0 and ak 6= 0R,
we call a a non-constant polynomial.

Clearly, R is a subring of R[T ], and consists precisely of the constant polynomials of R[T ]. In
particular, 0R is the additive identity of R[T ], and 1R is the multiplicative identity of R[T ].

5.2.1 Polynomials versus polynomial functions

Of course, a polynomial a =
∑k

i=0 aiT
i defines a polynomial function on R that sends x ∈ R

to
∑k

i=0 aix
i, and we denote the value of this function as a(x). However, it is important to to

regard polynomials over R as formal expressions, and not to identify them with their corresponding
functions. In particular, a polynomial a =

∑k
i=0 aiT

i is zero if and only if ai = 0R for 0 ≤ i ≤ k,
and two polynomials are equal if and only if their difference is zero. This distinction is important,
since there are rings R over which two different polynomials define the same function. One can
of course define the ring of polynomial functions on R, but in general, that ring has a different
structure from the ring of polynomials over R.

Example 5.11 In the ring Zp, for prime p, we have xp − x = [0] for all x ∈ Zp. But consider the
polynomial a = T p − T ∈ Zp[T ]. We have a(x) = 0R for all x ∈ 0R, and hence the function defined
by a is the zero function, yet a is not the zero polynomial. 2

5.2.2 Basic properties of polynomial rings

Let R be a ring.
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For non-zero a ∈ R[T ], if a =
∑k

i=0 aiT
i with ak 6= 0R, we call k the degree of a, denoted

deg(a), and we call ak the leading coefficient of a, denoted lc(a), and we call a0 the constant
term of a. If lc(a) = 1R, then a is called monic.

Note that if a, b ∈ R[T ], both non-zero, and their leading coefficients are not both zero divisors,
then the product ab is non-zero and deg(ab) = deg(a) + deg(b). However, if the leading coefficients
of a and b are both zero divisors, then we could get some “collapsing”: we could have ab = 0R, or
ab 6= 0R but deg(ab) < deg(a) + deg(b).

For the zero polynomial, we establish the following conventions: its leading coefficient and
constant term are defined to be 0R, and its degree is defined to be “−∞”, where it is understood
that for all integers x ∈ Z, −∞ < x, and (−∞) +x = x+ (−∞) = −∞, and (−∞) + (−∞) = −∞.

This notion of “negative infinity” should not be construed as a useful algebraic notion — it is
simply a convenience of notation; for example, it allows us to succinctly state that

for all a, b ∈ R[T ], deg(ab) ≤ deg(a) + deg(b), with equality holding if the leading
coefficients of a and b are not both zero divisors.

Theorem 5.5 Let D be an integral domain. Then

1. for all a, b ∈ D[T ], deg(ab) = deg(a) + deg(b);

2. D[T ] is an integral domain;

3. (D[T ])∗ = D∗.

Proof. Exercise. 2

5.2.3 Division with remainder

An extremely important property of polynomials is a division with remainder property, analogous
to that for the integers:

Theorem 5.6 (Division with Remainder Property) Let R be a ring. For a, b ∈ R[T ] with
lc(b) ∈ R∗, there exist unique q, r ∈ R[T ] such that a = bq + r and deg(r) < deg(b).

Proof. Consider the set S of polynomials of the form a− xb with x ∈ R[T ]. Let r = a− qb be an
element of S of minimum degree. We must have deg(r) < deg(b), since otherwise, we would have
r′ := r − (lc(r)lc(b)−1T deg(r)−deg(b)) · b ∈ S, and deg(r′) < deg(r), contradicting the minimality of
deg(r).

That proves the existence of r and q. For uniqueness, suppose that a = bq+ r and a = bq′+ r′,
where deg(r) < deg(b) and deg(r′) < deg(b). This implies r′ − r = b(q − q′). However, if q 6= q′,
then

deg(b) > deg(r′ − r) = deg(b(q − q′)) = deg(b) + deg(q − q′) ≥ deg(b),

which is impossible. Therefore, we must have q = q′, and hence r = r′. 2

If a = bq + r as in the above theorem, we define a rem b := r.

Theorem 5.7 If K is field, then for a, b ∈ K[T ] with b 6= 0K , there exist unique q, r ∈ K[T ] such
that a = bq + r and deg(r) < deg(b).

Proof. Clear. 2
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Theorem 5.8 For a ring R and a ∈ R[T ] and x ∈ R, a(x) = 0R if and only if (T − x) divides a.

Proof. Let us write a = (T − x)q + r, with q, r ∈ R[T ] and deg(r) < 1, which means that r ∈ R.
Then we have a(x) = (x− x)q(x) + r = r. Thus, a(x) = 0 if and only if T − x divides a. 2

With R, a, x as in the above theorem, we say that x is a root of a if a(x) = 0R.

Theorem 5.9 Let D be an integral domain, and let a ∈ D[T ], with deg(a) = k ≥ 0. Then a has
at most k roots.

Proof. We can prove this by induction. If k = 0, this means that a is a non-zero element of D,
and so it clearly has no roots.

Now suppose that k > 0. If a has no roots, we are done, so suppose that a has a root x. Then
we can write a = q(T − x), where deg(q) = k − 1. Now, for any root y of a with y 6= x, we have
0D = a(y) = q(y)(y − x), and using the fact that D is an integral domain, we must have q(y) = 0.
Thus, the only roots of a are x and the roots of q. By induction, q has at most k − 1 roots, and
hence a has at most k roots. 2

Theorem 5.10 Let D be an infinite integral domain, and let a ∈ D[T ]. If a(x) = 0D for all x ∈ D,
then a = 0D.

Proof. Exercise. 2

With this last theorem, one sees that for an infinite integral domain D, there is a one-to-one
correspondence between polynomials over D and polynomial functions on D.

5.3 Ideals and Quotient Rings

Throughout this section, let R denote a ring.

Definition 5.11 An ideal of R is a additive subgroup I of R that is closed under multiplication
by element of R, that is, for all x ∈ I and a ∈ R, xa ∈ I.

Clearly, {0} and R are ideals of R.

Example 5.12 For m ∈ Z, the set mZ is not only an additive subgroup of Z, it is also an ideal of
the ring Z. 2

Example 5.13 For m ∈ Z, the set mZn is not only an additive subgroup of Zn, it is also an ideal
of the ring Zn. 2

If d1, . . . , dk ∈ R, then the set

d1R1 + · · ·+ dkR := {d1a1 + · · ·+ dkak : a1, . . . , ak ∈ R}

is clearly an ideal, and contains d1, . . . , dk. It is called the ideal generated by d1, . . . , dk. Clearly,
any ideal I that contains d1, . . . , dk must contain d1R1 + · · ·+ dkR. If an ideal I is equal to dR for
some d ∈ R, then we say that I is a principal ideal.

Note that if I and J are ideals, then so are I + J := {x+ y : x ∈ I, y ∈ J} and I ∩ J .
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Throughout the rest of this section, I denotes an ideal of R.
Since I is an additive subgroup, we may adopt the congruence notation in §4.3, writing a ≡

b (mod I) if and only if a− b ∈ I.
Note that if I = dR, then a ≡ b (mod I) if and only if d | (a− b), and as a matter of notation,

we may simply write this congruence as a ≡ b (mod d).
If we just consider R as an additive group, then as we saw in §4.3, we can form the additive

group R/I of cosets, where (a+ I) + (b+ I) := (a+ b) + I. By considering also the multiplicative
structure of R, we can also view R/I as a ring. To do this, we need the following fact.

Theorem 5.12 If a ≡ a′ (mod I) and b ≡ b′ (mod I), then ab ≡ a′b′ (mod I).

Proof. If a′ = a + x for x ∈ I and b′ = b + y for y ∈ I, then a′b′ = ab + ay + bx + xy. Since I
is closed under multiplication by elements of R, we see that ay, bx, xy ∈ I, and since it is closed
under addition, ay + bx+ xy ∈ I. Hence, a′b′ − ab ∈ I. 2

So we define multiplication on R/I as follows: for a, b ∈ R,

(a+ I) · (b+ I) := ab+ I.

The previous theorem is required to show that this definition is unambiguous. It is trivial to show
that if I ( R, then R/I satisfies the properties defining of a ring, using the corresponding properties
for R. Note that the restriction that I ( R is necessary; otherwise R/I would consist of a single
element and could not satisfy the requirement that the additive and multiplicative identities are
distinct. This ring is called the quotient ring or residue class ring of R modulo I.

As a matter of notation, for a ∈ R, we define [a mod I] := a+ I, and if I = dR, we may write
this simply as [a mod d]. If I is clear from context, we may also just write [a].

Example 5.14 For n > 1, the ring Zn as we have defined it is precisely the quotient ring Z/nZ.
2

Example 5.15 Let m be a monic polynomial over R with deg(m) = ` > 0, and consider the
quotient ring S = R[T ]/mR[T ]. Every element of S can be written uniquely as [a mod m], where
a is a polynomial over R of degree less than `. 2

5.4 Ring homomorphisms and isomorphisms

Throughout this section, R and R′ denote rings.

Definition 5.13 A function f from R to R′ is called a homomorphism if it is a homomorphism
with respect to the underlying additive groups of R and R′, and if in addition,

1. f(ab) = f(a)f(b) for all a, b ∈ R, and

2. f(1R) = 1R′.

Moreover, if f is a bijection, then it is called an isomorphism of R with R′.
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Note that the requirement that f(1R) = 1R′ is not redundant. Some authors do not make this
requirement.

It is easy to see that if f is an isomorphism of R with R′, then the inverse function f−1 is an
isomorphism of R′ with R. If such an isomorphism exists, we say that R is isomorphic to R′,
and write R ∼= R′. We stress that an isomorphism of R with R′ is essentially just a “renaming” of
elements.

A homomorphism f from R to R′ is also a homomorphism from the additive group of R to the
additive group of R′. We may therefore adopt the terminology of kernel and image, as defined in
§4.4, and note that all the results of Theorem 4.17 apply as well here. In particular, f(a) = f(b) if
and only if a ≡ b (mod ker(f)), and f is injective if and only if ker(f) = {0R}. However, we may
strengthen Theorem 4.17 as follows:

Theorem 5.14 Let f : R→ R′ be a homomorphism.

1. For any subring S of R, f(S) is a subring of R′.

2. For any ideal I of R, f(I) is an ideal of f(R).

3. ker(f) is an ideal of R.

4. For any ideal I ′ of R′, f−1(I ′) is an ideal of R (and contains ker(f)).

5. The restriction f∗ of f to R∗ is a homomorphism from the multiplicative group R∗ into the
multiplicative group (R′)∗, and ker(f∗) = (1R + ker(f)) ∩R∗.

Proof. Exercise. 2

An injective homomorphism f : R → R′ is called an embedding of R in R′. In this case,
f(R) is a subring of R′ and R ∼= f(R), and we say that “R is embedded in R′,” or as an abuse of
terminology, one might simply say that “R is a subring of R′.”

Theorems 4.18, 4.19, and 4.20 also have natural analogs:

Theorem 5.15 If I is an ideal R, then the map f : R→ R/I given by f(a) = a+ I is a surjective
homomorphism whose kernel is I. This is sometimes called the “natural” map from R to R/I.

Proof. Exercise. 2

Theorem 5.16 Let f be a homomorphism from R into R′. Then the map f̄ : R/ ker(f) → f(R)
that sends the coset a+ ker(f) for a ∈ R to f(a) is unambiguously defined and is an isomorphism
of R/ ker(f) with f(R).

Proof. Exercise. 2

Theorem 5.17 Let f be a homomorphism from R into R′. The ideals of R containing ker(f) are
in one-to-one correspondence with the ideals of f(R), where the the ideal I in R containing ker(f)
corresponds to the ideal f(I) in f(R).

Proof. Exercise. 2
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Example 5.16 For n > 1, the natural map f from Z to Zn sends a ∈ Z to the residue class
[a mod n]. This is a surjective map with kernel nZ. Consider the multiplicative group of units
Z
∗ = {±1} and the restriction f∗ of f to Z∗. This is a homomorphism from Z

∗ into Z∗n with kernel
ker(f∗) = (1 + nZ) ∩ {±1}. Thus, if n = 2, ker(f∗) = {±1}, and otherwise, ker(f∗) = {1}. 2

Example 5.17 We may restate the Chinese Remainder Theorem (see Theorem 2.6) in more al-
gebraic terms. Let n1, . . . , nk be integers, all greater than 1, such that gcd(ni, nj) = 1 for all
1 ≤ i < j ≤ k. Consider the homomorphism from the ring Z to the ring Zn1 × · · · × Znk that
sends x ∈ Z to ([x mod n1], . . . , [x mod nk]). In our new language, Theorem 2.6 says that this
homomorphism is surjective and the kernel is nZ, where n =

∏k
i=1 ni. Therefore, the map that

sends [x mod n] ∈ Zn to ([x mod n1], . . . , [x mod nk]) is an isomorphism of the ring Zn with the ring
Zn1×· · ·×Znk . The restriction of this map to Z∗n yields an isomorphism of Z∗n with Z∗n1

×· · ·×Z∗nk .
2

Example 5.18 Let n1, n2 be positive integers with n1 > 1 and n1 | n2. Then the map f : Zn2 →
Zn1 that sends [a mod n2] to [a mod n1] is a surjective homomorphism, [a mod n2] ∈ ker(f) if and
only if n1 | a, i.e., ker(f) = n1Zn2 . 2

Example 5.19 Fix x ∈ R. The map that sends a ∈ R[T ] to a(x) is a homomorphism from R[T ]
onto R. The kernel is the ideal generated by (T − x). Thus, R[T ]/(T − x) ∼= R. 2

Example 5.20 Let us continue with Example 5.15. The map f : R → S that sends r ∈ R to
[r mod m] ∈ S is an embedding of R in S. 2

Example 5.21 For any ring R, consider the map f : Z → R that sends m ∈ Z to m · 1R in R.
This is clearly a homomorphism of rings. If ker(f) = {0}, then the ring Z is embedded in R, and
R has characteristic zero. If ker(f) = nZ for n > 0, then the ring Zn is embedded in R, and R has
characteristic n. 2
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Chapter 6

Polynomials over Fields

Throughout this chapter, K denotes a field, and D denotes the ring K[T ] of polynomials over
K. Like the ring Z, D is an integral domain, and as we shall see, because of the division with
remainder property for polynomials, D has many other properties in common with Z as well.
Indeed, essentially all the ideas and results from Chapters 1 and 2 carry over almost immediately
from Z to D.

Recall that for a, b ∈ D, we write b | a if a = bc for some c ∈ D; note that deg(a) = deg(b) +
deg(c). Also, recall that because of the cancellation law for an integral domain, if b | a and b 6= 0,
then the choice of c above is unique, and may be denoted a/b.

The units D∗ of D are precisely the units K∗ of K; i.e., the non-zero constants. We call two
polynomials a, b ∈ D associates if a = bu for u ∈ K∗. Clearly, any non-zero polynomial a is
associate to a unique monic polynomial, called the monic associate of a. Note that a polynomial
a is a unit if and only if it is associate to 1. Let us call a polynomial normalized if it is either
zero or monic.

We call a polynomial p irreducible if it is non-constant and all divisors of p are associate to
1 or p. Conversely, we call a polynomial n reducible if it is non-constant and is not irreducible.
Equivalently, non-constant n is reducible if and only if there exist polynomials a, b ∈ D of degree
strictly less that n such that n = ab.

Clearly, if a and b are associate polynomials, then a is irreducible if and only if b is irreducible.
The irreducible polynomials play a role similar to that of the prime numbers. Just as it is

convenient to work with only positive prime numbers, it is also convenient to restrict attention to
monic irreducible polynomials.

Corresponding to Theorem 1.2, every non-zero polynomial can be expressed as a unit times a
product of monic irreducibles in an essentially unique way:

Theorem 6.1 Every non-zero polynomial n can be expressed as

n = u ·
∏
p

pνp(n),

where u is a unit, and the product is over all monic irreducible polynomials, with all but a finite
number of the exponents zero. Moreover, the exponents and the unit are uniquely determined by n.

To prove this theorem, we may assume that n is monic, since the non-monic case trivially
reduces to the monic case.
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The proof of the existence part of Theorem 6.1 is just as for Theorem 1.2. If n is 1 or a monic
irreducible, we are done. Otherwise, there exist a, b ∈ D of degree strictly less than n such that
n = ab, and again, we may assume that a and b are monic. We then apply an inductive argument
with a and b.

The proof of the uniqueness part of Theorem 6.1 is almost identical to that of Theorem 1.2.
Analogous to Theorem 1.4, we have:

Theorem 6.2 For any ideal I ⊂ D, there exists a unique normalized polynomial d such that
I = dD.

Proof. We first prove the existence part of the theorem. If I = {0}, then d = 0 does the job, so
let us assume that I 6= {0}. Let d be a monic polynomial of minimal degree in I. We want to show
that I = dD.

We first show that I ⊂ dD. To this end, let c be any element in I. It suffices to show that
d | c. Using the Division with Remainder Property, write c = qd+ r, where deg(r) < deg(d). Then
by the closure properties of ideals, one sees that r = c − qd is also an element of I, and by the
minimality of the choice of d, we must have r = 0. Thus, d | c.

We next show that dD ⊂ I. This follows immediately from the fact that d ∈ I and the closure
properties of ideals.

That proves the existence part of the theorem. As for uniqueness, note that if dD = d′D, we
have d | d′ and d′ | d, from which it follows that d′ = ud for a unit u. 2

For a, b ∈ D, we call d ∈ D a common divisor of a and b if d | a and d | b; moreover, we call
d the greatest common divisor of a and b if d is normalized, and all other common divisors of
a and b divide d. It is immediate from the definition of a greatest common divisor that it is unique
if it exists at all.

Analogous to Theorem 1.5, we have:

Theorem 6.3 For any a, b ∈ D, there exists a greatest common divisor d of a and b, and moreover,
aD + bD = dD; in particular, as+ bt = d for some s, t ∈ D.

Proof. Replace the symbol Z in the proof of Theorem 1.5 with the symbol D. 2

For a, b ∈ D, we denote by gcd(a, b) the greatest common divisor of a and b.
We say that a and b are relatively prime if gcd(a, b) = 1. Notice that a and b are relatively

prime if and only if aD + bD = D, i.e., if and only if there exist s, t ∈ D such that as+ bt = 1.
Analogous to Theorem 1.6, we have:

Theorem 6.4 For a, b, c ∈ D such that c | ab and gcd(a, c) = 1, we have c | b.

Proof. Replace the symbol Z in the proof of Theorem 1.6 with the symbol D. 2

Analogous to Theorem 1.7, we have:

Theorem 6.5 Let p ∈ D be irreducible, and let a, b ∈ D. Then p | ab implies that p | a or p | b.

Proof. The only divisors of p are associate to 1 or p. Thus, gcd(p, a) is either 1 or the monic
associate of p. If p | a, we are done; otherwise, if p - a, we must have gcd(p, a) = 1, and by the
previous theorem, we conclude that p | b. 2
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Now to prove the uniqueness part of Theorem 6.1. Clearly, the choice of the unit u is uniquely
determined: u = lc(n). Suppose we have

p1 · · · pr = p′1 · · · p′s,

where the pi and p′i are monic irreducible polynomials (duplicates are allowed among the pi and
among the p′i). If r = 0, we must have s = 0 and we are done. Otherwise, as p1 divides the
right-hand side, by inductively applying Theorem 6.5, one sees that p1 is equal to some p′i. We can
cancel these terms and proceed inductively (on r).

That completes the proof of Theorem 6.1.

For non-zero polynomials a and b, it is easy to see that

gcd(a, b) =
∏
p

pmin(νp(a),νp(b)),

where the function νp(·) is as implicitly defined in Theorem 6.1.
For a, b ∈ D a common multiple of a and b is a polynomial m such that a | m and b | m;

moreover, m is a least common multiple of a and b if m is normalized, and m divides all common
multiples of a and b. In light of Theorem 6.1, it is clear that the least common multiple exists and
is unique; indeed, if we denote the least common multiple of a and b as lcm(a, b), then for non-zero
polynomials a and b, we have

lcm(a, b) =
∏
p

pmax(νp(a),νp(b)).

Moreover, for all a, b ∈ D, we have

gcd(a, b) · lcm(a, b) = ab.

Recall that for polynomials a, b, n, we write a ≡ b (mod n) when n | (a− b).
For a non-zero polynomial n, and a ∈ D, we say that a is a unit modulo n if there exists

a′ ∈ D such that aa′ ≡ 1 (mod n), in which case we say that a′ is a multiplicative inverse of a
modulo n.

All of the results we proved in Chapter 2 for integer congruences carry over almost identically
to polynomials. As such, we do not give proofs of any of the results here. The reader may simply
check that the proofs of the corresponding results translate almost directly.

Theorem 6.6 An polynomial a is a unit modulo n if and only if a and n are relatively prime.

Theorem 6.7 If a is relatively prime to n, then ax ≡ ax′ (mod n) if and only if x ≡ x′ (mod n).
More generally, if d = gcd(a, n), then ax ≡ ax′ (mod n) if and only if x ≡ x′ (mod n/d).

Theorem 6.8 Let n be a non-zero polynomial and let a, b ∈ D. If a is relatively prime to n, then
the congruence ax ≡ b (mod n) has a solution x; moreover, any integer x′ is a solution if and only
if x ≡ x′ (mod n).

Theorem 6.9 Let n be a non-zero polynomial and let a, b ∈ D. Let d = gcd(a, n). If d | b, then
the congruence ax ≡ b (mod n) has a solution x, and any integer x′ is also a solution if and only
if x ≡ x′ (mod n/d). If d - b, then the congruence ax ≡ b (mod n) has no solution x.
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Theorem 6.10 (Chinese Remainder Theorem) Let k > 0, and let a1, . . . , ak ∈ D, and let
n1, . . . , nk be non-zero polynomials such that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ k. Then there
exists a polynomial x such that

x ≡ ai (mod ni) (i = 1, . . . , k).

Moreover, any other polynomial x′ is also a solution of these congruences if and only if x ≡
x′ (mod n), where n :=

∏k
i=1 ni.

If we set R = D/nD and Ri = D/niD for 1 ≤ i ≤ k, then in ring-theoretic language, the
Chinese Remainder Theorem says the homomorphism from the ring D to the ring R1 × · · · × R1

that sends x ∈ D to ([x mod n1], . . . , [x mod nk]) is a surjective homomorphism with kernel nD,
and hence R ∼= R1 × · · · ×Rk.

Let us recall the formula for the solution x (see proof of Theorem 2.6). We have

x :=
k∑
i=1

ziai,

where
zi := n′imi, n′i := n/ni, min

′
i ≡ 1 (mod ni) (i = 1, . . . , k).

Now, let us consider the special case of the Chinese Remainder Theorem where ai ∈ K and
and ni = (T − bi) with bi ∈ K, for 1 ≤ i ≤ k. The condition that gcd(ni, nj) = 1 for all i 6= j is
equivalent to the condition that bi 6= bj for all i 6= j. Then a polynomial x satisfies the system of
congruences if and only if x(bi) = ai for 1 ≤ i ≤ k. Moreover, we have n′i =

∏
j 6=i(T − bj), and

mi := 1/
∏
j 6=i(bi − bj) is a multiplicative inverse of n′i modulo ni. So we get

x =
k∑
i=1

ai

∏
j 6=i(T − bj)∏
j 6=i(bi − bj)

.

The reader will recognize this as the LaGrange Interpolation Formula. Thus, the Chinese Remainder
Theorem for polynomials includes LaGrange Interpolation as a special case.

As we saw in Example 5.15, if m is a monic polynomial over K of degree ` > 0, then the
elements of quotient ring S = D/mD are in one-to-one correspondence with the polynomials of
degree less than `. More precisely, every element of S can be expressed uniquely as [a mod m],
where a is a polynomial of degree less than `. As we saw in Example 5.20, the ring S contains an
isomorphic copy of K. Now, if m happens to be irreducible, then S is a field, since every [a mod m]
with a 6≡ 0 (mod m) has a multiplicative inverse. If K = Zp for a prime number p, then we see
that S is a field of cardinality p`.
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Chapter 7

The Structure of Z∗n

We study the structure of the group of units Z∗n of the ring Zn. As we know, Z∗n consists of those
elements [a mod n] ∈ Zn such that a is an integer relatively prime to n.

Suppose n = pe11 · · · perr is the factorization of n into primes. By the Chinese Remainder Theo-
rem, we have the ring isomorphism

Zn
∼= Zp

e1
1
× · · · × Zperr

which induces a group isomorphism

Z
∗
n
∼= Z

∗
p
e1
1
× · · · × Z∗perr .

Thus the problem of studying the group of units of modulo an arbitrary integer reduces to the
studying the group of units modulo a prime power.

Define φ(n) to be the cardinality of Z∗n. This is equal to the number of integers in the interval
{0, . . . , n− 1} that are relatively prime to n. It is clear that φ(p) = p− 1 for prime p.

Theorem 7.1 If n = pe11 · · · perr is the prime factorization of n, then

φ(n) = pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1).

Proof. By the Chinese Remainder Theorem, we have φ(n) = φ(pe11 ) · · ·φ(perr ), so it suffices to
show that for a prime power pe, φ(pe) = pe−1(p− 1). Now, φ(pe) is equal to pe minus the number
of integers in the interval {0, . . . , pe − 1} that are a multiple of p. The integers in the interval
{0, . . . , pe − 1} that are multiplies of p are precisely 0, p, 2p, 3p, . . . , (pe−1 − 1)p, of which there are
pe−1. Thus, φ(pe) = pe − pe−1 = pe−1(p− 1). 2

Next, we study the structure of the group Z∗n. Again, by the Chinese Remainder Theorem, it
suffices to consider Z∗pe for prime p.

We consider first consider the simpler case Z∗p.

Theorem 7.2 Z
∗
p is a cyclic group.

This theorem follows from the more general theorem:

Theorem 7.3 Let K be a field and G a subgroup of K∗ of finite order. Then G is cyclic.
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Proof. Let n be the order of G, and suppose G is not cyclic. Then by Theorem 4.32, we have that
the exponent m of G is strictly less than n. It follows that for all α ∈ G, αm = 1K . That is, all
the elements of G are roots of the polynomial Tm − 1K ∈ K[T ]. But since a polynomial of degree
m over a field has at most m roots, this contradicts the fact that m < n. 2

Now we consider more generally the structure of Z∗pe . The situation for odd p is described by
the following theorem.

Theorem 7.4 Let p be an odd prime and e ≥ 1. Then Z∗pe is cyclic.

For p = 2, the situation is slightly more complicated:

Theorem 7.5 The group Z∗2e is cyclic for e = 1 or 2, but not for e ≥ 3. For e ≥ 3, Z∗2e is
isomorphic to the group Z2 × Z2e−2.

Before proving these two theorems, we need a few simple facts.

Theorem 7.6 If p is prime and 0 < k < p, then the binomial coefficient
(
p
k

)
is divisible by p.

Proof. By definition (
p

k

)
=

p!
k!(p− k)!

.

One sees that p divides the numerator, but for 0 < k < p, p does not divide the denominator. 2

Theorem 7.7 For e ≥ 1, if a ≡ b (mod pe), then ap ≡ bp (mod pe+1).

Proof. We have a = b + cpe for some c ∈ Z. Thus, ap = bp + pbp−1cpe + dp2e for an integer d. It
follows that ap ≡ bp (mod pe+1). 2

Theorem 7.8 Let e ≥ 1 and assume pe > 2. If a ≡ 1 + pe (mod pe+1), then ap ≡
1 + pe+1 (mod pe+2).

Proof. By Theorem 7.7, ap ≡ (1 + pe)p (mod pe+2). Expanding (1 + pe)p, we have

(1 + pe)p = 1 + p · pe +
p−1∑
k=2

(
p

k

)
pek + pep.

Applying Theorem 7.6, all of the terms in the sum on k are divisible by p1+2e, and 1 + 2e ≥ e+ 2
for all e ≥ 1. For the term pep, the assumption that pe > 2 means that either p ≥ 3 or e ≥ 2, which
implies ep ≥ e+ 2. 2

Now consider Theorem 7.4. Let p be odd and e > 1. Let x ∈ Z be chosen so that [x mod p]
generates Z∗p. Suppose the order of [x mod pe] ∈ Z∗pe is m. Then as xm ≡ 1 (mod pe) implies
xm ≡ 1 (mod p), it must be the case that p − 1 divides m, and so [xm/(p−1) mod pe] has order
exactly p− 1. By Theorem 4.29, if we find an integer y such that [y mod pe] has order pe−1, then
[xm/(p−1)y mod pe] has order (p− 1)pe−1, and we are done. We claim that y = 1 + p does the job.
Any integer between 0 and pe − 1 can be expressed as an e-digit number in base p; for example,
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y = (0 · · · 0 1 1)p. If we compute successive p-th powers of y modulo pe, then by Theorem 7.8 we
have:

y rem pe = (0 · · · 0 1 1)p
yp rem pe = (∗ · · · ∗ 1 0 1)p
yp

2
rem pe = (∗ · · · ∗ 1 0 0 1)p

...
yp

e−2
rem pe = (1 0 · · · 0 1)p

yp
e−1

rem pe = (0 · · · 0 1)p

Here, “∗” indicates an arbitrary digit. From this table of values, it is clear (c.f., Theorem 4.28)
that [y mod pe] has order pe−1. That proves Theorem 7.4.

Now consider Theorem 7.5. For e = 1 and e = 2, the theorem is clear. Suppose e ≥ 3. Consider
the subgroup G ⊂ Z∗2e generated by [5 mod 2e]. Expressing integers between 0 and 2e− 1 as e-digit
binary numbers, and applying Theorem 7.8, we have:

5 rem 2e = (0 · · · 0 1 0 1)2

52 rem 2e = (∗ · · · ∗ 1 0 0 1)2
...

52e−3
rem 2e = (1 0 · · · 0 1)2

52e−2
rem 2e = (0 · · · 0 1)2

So it is clear (c.f., Theorem 4.28) that [5 mod 2e] has order 2e−2. We claim that [−1 mod 2e] /∈ G.
If it were, then since it has order 2, and since any cyclic group of even order has precisely one
element of order 2 (c.f., Theorem 4.24), it must be equal to [52e−3

mod 2e]; however, it is clear
from the above calculation that 52e−3 6≡ −1 (mod 2e). Let H ⊂ Z∗2e be the subgroup generated by
[−1 mod 2e]. Then from the above, G ∩H = {[1 mod 2e]}, and hence by Theorem 4.21, G×H is
isomorphic to the subgroup G ·H of Z∗2e . But since the orders of G×H and Z∗2e are equal, we must
have G ·H = Z

∗
2e . That proves Theorem 7.5.
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Chapter 8

Computing Generators and Discrete
Logarithms in Z∗p

As we have seen in the previous chapter, for a prime p, Z∗p is a cyclic group of order p − 1. This
means that there exists a generator γ ∈ Z∗p, such that for all α ∈ Z∗p, α can be written uniquely as
α = γx for 0 ≤ x < p− 1; the integer x is called the discrete logarithm of α to the base γ, and
is denoted logγ α.

This chapter discusses some elementary considerations regarding the computational aspects of
this situation; namely, how to efficiently find a generator γ, and given γ and α, how to compute
logγ α.

More generally, if γ generates a subgroup of Z∗p of order q, where q | (p− 1), and α ∈ 〈γ〉, then
logγ α is defined to be the unique integer x with 0 ≤ x < q and α = γx. In some situations it is
more convenient to view logγ α as an element of Zq. Also for x ∈ Zq, with x = [a mod q], one may
write γx to denote γa. There can be no confusion, since if x = [a′ mod q], then γa

′
= γa. However,

in this chapter, we shall view logγ α as an integer.

8.1 Finding a Generator for Z∗p

There is no efficient algorithm known for this problem, unless the prime factorization of p − 1 is
given, and even then, we must resort to the use of a probabilistic algorithm.

8.1.1 Probabilistic algorithms

A probabilistic algorithm is one that during the course of its execution generates random integers
(drawn, say, uniformly from some interval). Generally speaking, the behavior of a probabilistic
algorithm depends not only on its input, but also on the particular values of the above-mentioned
randomly generated numbers. The running time and output of the algorithm on a given input are
properly regarded as random variables. An efficient probabilistic algorithm for solving a given
problem is one which

• for all inputs, outputs the correct answer with probability very close to 1;

• for all inputs, its expected running time is bounded by a polynomial in the input length.

Note that we have not specified in the above requirement just how close to 1 the probability that
the output is correct should be. However, it does not really matter (at least, as far as theoretical
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computer scientists are concerned). If this probability is at least, say, 2/3, then we can make it at
least 1 − 2−t by running the algorithm tO(1) times, and taking the majority output. The analysis
of this “amplification” procedure relies on standard results on the tail of the binomial distribution,
which we do not go into here.

A problem of both philosophical and practical interest is the problem of where we get random
numbers from. In practice, no one cares: one just uses a reasonably good pseudo-random number
generator, and ignores the problem.

8.1.2 Finding a generator

We now present an efficient probabilistic algorithm that takes as input an odd prime p, along with
the prime factorization

p− 1 =
r∏
i=1

qeii ,

and outputs a generator for Z∗p. It runs as follows:

for i← 1 to r do
repeat

choose α ∈ Z∗p at random
compute β ← α(p−1)/qi

until β 6= 1

γi ← α(p−1)/q
ei
i

γ ←
∏r
i=1 γi

output γ

First, let us analyze the correctness of this algorithm. When the ith loop iteration terminates,
by construction, we have

γ
q
ei
i
i = 1 but γ

q
ei−1
i
i 6= 1.

It follows (c.f., Theorem 4.28) that γi has order qeii . From this, it follows (c.f., Theorem 4.29) that
γ has order p− 1.

Thus, we have shown that if the algorithm terminates, its output is always correct.
Let us now analyze the running time of this algorithm. Consider the repeat/until loop in the ith

iteration of the outer loop. Since the kernel of the (p−1)/qi-power map on Z∗p has order (p−1)/qi,
the probability that a random α ∈ Z∗p lies in the kernel is 1/qi. It follows that the expected number
of iterations of the repeat/until loop is O(1), and therefore, the expected running time of the entire
algorithm is O(rL(p)3), and since r ≤ log2 p, this is O(L(p)4).

Note that if we are not given the prime factorization of p−1, but rather, just a prime q dividing
p− 1, and we want to find an element of order q in Z∗p, then the above algorithm is easily adapted
to this problem. We leave the details as an exercise for the reader.
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8.2 Computing Discrete Logarithms Z∗p

In this section, we consider algorithms for computing the discrete logarithm of α ∈ Z∗p to a given
base γ. The algorithms we present here are in the worst case exponential-time algorithms, and are
by no means the best possible; however, in some special cases, these algorithms are not so bad.

8.2.1 Brute-force search

Suppose that γ ∈ Z∗p generates a subgroup of order q (not necessarily prime), and we are given p,
q, γ, and α ∈ 〈γ〉, and wish to compute logγ α.

The simplest algorithm to solve the problem is brute-force search:

β ← 1
i← 0
while β 6= α do

β ← β · γ
i← i+ 1

output i

This algorithm is clearly correct, and the main loop will always halt after at most q iterations
(assuming, as we are, that α ∈ 〈γ〉). So the total running time is O(qL(p)2).

8.2.2 Baby step/giant step method

As above, suppose that γ ∈ Z∗p generates a subgroup of order q (not necessarily prime), and we are
given p, q, γ, and α ∈ 〈γ〉, and wish to compute logγ α.

A faster algorithm than brute-force search is the baby step/giant step method. It works as
follows.

Let us choose an approximation m to q1/2. It does not have to be a very good approximation
— we just need m = Θ(q1/2). Also, let m′ = bq/mc, so that m′ = Θ(q1/2) as well.

The idea is to compute all the values γi for 0 ≤ i < m (the “baby steps”) and to build a “lookup
table” T that contains all the pairs (γi, i). Using an appropriate data structure, such as a search
trie, we can build the table in time O(mL(p)2), and we can perform a lookup in time O(L(p)). By
a lookup, we mean that given β ∈ Z∗p, we can determine if β = γi for some i, and if so, determine
the value of i. Let us define T (β) := i if β = γi for some i; and otherwise, T (β) := −1.

After building the lookup table, we execute the following procedure:

γ′ ← γ−m

β ← α; j ← 0; i← T (β)
while i = −1 do

β ← β · γ′; j ← j + 1; i← T (β)

x← jm+ i
output x

To analyze this procedure, suppose that α = γx for 0 ≤ x < q. Now, x can be written in a
unique way as x = vm + u, where 0 ≤ u < m and 0 ≤ v ≤ m′. In the jth loop iteration, for
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j = 0, 1, . . . , we have
β = αγ−mj = γ(v−j)m+u.

So we will find that i 6= −1 precisely when j = v, in which case i = u. Thus, the output will be
correct, and the total running time of the algorithm is easily seen to be O(q1/2L(p)2).

While this algorithm is much faster than brute-force search, it has the drawback that it requires
a table of size O(q1/2). Of course, there is a “time/space trade-off” here: by choosing m smaller,
we get a table of size O(m), but the running time will be proportional to O(q/m).

There are, in fact, algorithms that run (at least heuristically) in time proportional to O(q1/2),
but which require only a constant amount of space. We do not discuss these algorithms here.

8.2.3 Groups of order qe

Suppose that γ ∈ Z∗p generates a subgroup of order qe, where q > 1 and e ≥ 1, and we are given p,
q, γ, and α ∈ 〈γ〉, and wish to compute logγ α.

There is a simple algorithm that allows one to reduce this problem to the problem of computing
discrete logarithms in a subgroup of order q.

It is perhaps easiest to describe the algorithm recursively.
The base case is when e = 1, in which case, we use an algorithm for the subgroup of order q.
Suppose now that e > 1. We choose an integer f with 0 < f < e. Different strategies for

choosing f yield different algorithms — we discuss this below. Suppose α = γx, where 0 ≤ x < qe.
Then we can write x = qfv + u, where 0 ≤ u < qf and 0 ≤ v < qe−f . Therefore,

αq
e−f

= γq
e−fu.

Note that γq
e−f

has order qf , and so if we recursively compute the discrete logarithm of αq
e−f

to
the base γq

e−f
, we obtain u.

Having obtained u, observe
α/γu = γq

fv.

Note also that γq
f

has order qe−f , and so if we recursively compute the discrete logarithm of α/γu

to the base γq
f
, we obtain u, from which we then compute x = qfv + u.

To analyze the running time of this algorithm, note that we recursively reduce the discrete
logarithm problem to a base of order qe to two discrete logarithm problems: one to a base of order
qf and the other to a base of order qe−f . The running time of the body of one recursive invocation
(not counting the running time of the recursive calls it makes) is O(e log q · L(p)2).

To calculate the total running time, we have to sum up the running times of all the recursive
calls plus the running times of all the base cases.

Regardless of the strategy for choosing f , the total number of base case invocations is e. Note
that for e > 1, all the base cases compute discrete logarithms are to the base γq

e−1
. Assuming we

implement the base case using the baby step/giant step algorithm, the total running time for all
the base cases is therefore O(eq1/2L(p)2).

The running time for the recursive calls depends on the strategy used to choose f . If we always
choose f = 1 or f = e− 1, then the running time is for all the recursive calls is O(e2 log q · L(p)2).
However, if we use a “balanced” divide-and-conquer strategy, choosing f ≈ e/2, then we get
O(e log e log q · L(p)2).

In summary, the total running time is:

O((eq1/2 + e log e log q) · L(p)2).
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8.2.4 Discrete logarithms in Z∗p

Suppose that we are given a prime p, along with the prime factorization

p− 1 =
r∏
i=1

qeii ,

a generator γ for Z∗p, and α ∈ Z∗p. We wish to compute logγ α.
Suppose that α = γx, where 0 ≤ x < p− 1. Then for 1 ≤ i ≤ r,

α(p−1)/q
ei
i = γ(p−1)/q

ei
i x.

Note that γ(p−1)/q
ei
i has order qeii , and if xi is the discrete logarithm of α(p−1)/q

ei
i to the base

γ(p−1)/q
ei
i , then we have 0 ≤ xi < qeii and x ≡ xi (mod qeii ).

Thus, if we compute the values x1, . . . , xr, using the algorithm in §8.2.3, we can obtain x using
the algorithm of the Chinese Remainder Theorem. If we define q := max{qi : 1 ≤ i ≤ r}, then the
running time of this algorithm will be bounded by q1/2L(p)O(1).

8.3 Further remarks

One conclusion to be drawn from the observations in this cahpter is that if all the prime factors of
p− 1 are “small,” then the discrete logarithm problem in Z∗p is “easy.”

The algorithm we have presented here is by no means the fastest. The fastest known algorithm
for this problem is based on a technique called the number field sieve, and runs in time

exp(L(P )1/3(logL(P ))2/3).

While this running time is still larger than any polynomial in L(P ), it is still much smaller than
that of the simple algorithm presented above.

Finally, we remark that all of the algorithms presented in this chapter work in any finite cyclic
group — we really did not exploit any properties about Z∗p other than the fact that it is a cyclic
group. However, faster discrete logarithm algorithms, like those mentioned above based on the
number field sieve, do not work in an arbitrary finite cyclic group; these algorithms only work for
Z
∗
p, and more generally, for K∗, where K is a finite field.
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Chapter 9

Quadratic Residues and Quadratic
Reciprocity

9.1 Quadratic Residues

For positive integer n, an integer a is called a quadratic residue modulo n if gcd(a, n) = 1 and
x2 ≡ a (mod n) for some integer x; in this case, we say that x is a square root of a modulo n.

The quadratic residues modulo n correspond exactly to the subgroup of squares (Z∗n)2 of Z∗n;
that is, a is a quadratic residue modulo n if and only if [a mod n] ∈ (Z∗n)2.

Let us first consider the case where n = p, where p is an odd prime. In this case, we know
that Z∗p is cyclic of order p− 1. Recall that the subgroups any finite cyclic group are in one-to-one
correspondence with the divisors of the order of the group.

For any d | (p − 1), consider the d-power map on Z∗p that sends α ∈ Z∗p to αd. The image of
this map is the unique subgroup of Z∗p of order (p− 1)/d, and the kernel of this map is the unique
subgroup of order d (c.f., Theorem 4.24). This means that the image of the 2-power map is of order
(p− 1)/2 and must be the same as the kernel of the (p− 1)/2-power map. Since the image of the
(p − 1)/2-power map is of order 2, it must be equal to the subgroup {[±1 mod p]}. The kernel of
the 2-power map is of order 2, and so must also be equal to the subgroup {[±1 mod p]}.

Translating from group-theoretic language to the language of congruences, we have shown:

Theorem 9.1 For an odd prime p, the number of quadratic residues a modulo p, with 0 < a < p,
is (p − 1)/2. Moreover, if x is a square root of a modulo p, then so is −x, and any square root y
of a modulo p satisfies y ≡ ±x (mod p). Also, for any integer a 6≡ 0 (mod p), we have a(p−1)/2 ≡
±1 (mod p), and moreover, a is a quadratic residue modulo p if and only if a(p−1)/2 ≡ 1 (mod p).

Now consider the case where n = pe, where p is an odd prime and e > 1. We also know
that Z∗pe is a cyclic group of order pe−1(p − 1), and so everything that we said in discussing
the case Z∗p applies here as well. Thus, for a 6≡ 0 (mod p), a is a quadratic residue modulo
pe if and only if ap

e−1(p−1)/2 ≡ 1 (mod pe). However, we can simplify this a bit. Note that
ap

e−1(p−1)/2 ≡ 1 (mod pe) implies ap
e−1(p−1)/2 ≡ 1 (mod p), and by Theorem 4.23 (Fermat’s Little

Theorem), this implies a(p−1)/2 ≡ 1 (mod p). Conversely, by Theorem 7.7, a(p−1)/2 ≡ 1 (mod p)
implies ap

e−1(p−1)/2 ≡ 1 (mod pe). Thus, we have shown:

Theorem 9.2 For an odd prime p and positive integer e, the number of quadratic residues a
modulo pe, with 0 < a < pe, is pe−1(p− 1)/2. Moreover, if x is a square root of a modulo pe, then
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so is −x, and any square root y of a modulo pe satisfies y ≡ ±x (mod pe). Also, for any integer
a 6≡ 0 (mod p), we have ap

e−1(p−1)/2 ≡ ±1 (mod p), and moreover, a is a quadratic residue modulo
pe iff ap

e−1(p−1)/2 ≡ 1 (mod pe) iff a(p−1)/2 ≡ 1 (mod p) iff a is a quadratic residue modulo p.

Now consider an arbitary odd positive integer n. Let n =
∏r
i=1 p

ei
i be its prime factorization.

Recall the group isomorphism implied by the Chinese Remainder Theorem:

Z
∗
n
∼= Z

∗
p
e1
1
× · · · × Z∗perr .

Now,
(α1, . . . , αr) ∈ Z∗pe11

× · · · × Z∗perr
is a square if and only if there exist β1, . . . , βr with βi ∈ Z∗peii

and αi = β2
i for 1 ≤ i ≤ k, in wich

case, we see that the square roots of (α1, . . . , αr) comprise the 2r elements (±β1, . . . ,±βr). Thus
we have:

Theorem 9.3 Let n be odd positive integer n with prime factorization n =
∏r
i=1 p

ei
i . The number

of quadratic residues a modulo n, with 0 < a < n, is φ(n)/2r. Moreover, if a is a quadratic residue
modulo n, then there are precisely 2r distinct integers x, with 0 < x < n, such that x2 ≡ a (mod n).
Also, an integer a is a quadratic resisdue modulo n if and only if it is a quadratic residue modulo
pi for 1 ≤ i ≤ r.

That completes our investigation of the case where n is an odd positive integer. We shall not
investigate the case where n is even, as it is a bit cumbersome, and is not of particular importance.

9.2 The Legendre Symbol

For an odd prime p and an integer a with gcd(a, p) = 1, the Legendre symbol (a | p) is defined
to be 1 if a is a quadratic residue modulo p, and −1 otherwise. For completeness, one defines
(a | p) = 0 if p | a.

Theorem 9.4 Let p be an odd prime, and let a, b ∈ Z, both not divisible by p. Then

1. (a | p) ≡ a(p−1)/2 (mod p); in particular, (−1 | p) = (−1)(p−1)/2;

2. (a | p)(b | p) = (ab | p);

3. a ≡ b (mod p) implies (a | p) = (b | p);

4. (2 | p) = (−1)(p2−1)/8;

5. if q is an odd prime different from p, then

(p | q)(q | p) = (−1)
p−1

2
q−1

2 .

Part (5) of this theorem is called the Law of Quadratic Reciprocity.
Part (1) follows from Theorem 9.1. Part (2) is an immediate cosequence of part (1), and part

(3) is clear from the definition.
The rest of this section is devoted to a proof of parts (4) and (5) of this theorem. The proof

is completely elementary, although a bit technical. The proof we present here is taken almost
verbatim from Niven and Zuckerman’s book, An Introduction to the Theory of Numbers.
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Theorem 9.5 (Gauss’ Lemma) Let p be an odd prime and a relatively prime to p. Define αj :=
ja rem p for 1 ≤ j ≤ (p − 1)/2, and let n be the number of indices j for which αj > p/2. Then
(a | p) = (−1)n.

Proof. Let r1, . . . , rn denote the αj ’s exceeding p/2, and let s1, . . . , sk denote the remaining αj ’s.
The ri and si are all distinct and non-zero. We have 0 < p− ri < p/2 for 1 ≤ i ≤ n, and no p− ri
is an sj ; indeed, if p − ri = sj , then sj ≡ −rj (mod p), and writing sj = k1a and rj = k2a for
1 ≤ k1, k2 ≤ (p − 1)/2, we have k1a ≡ −k2a (mod p), which implies k1 ≡ −k2 (mod p), which is
impossible.

It follows that the sequence of numbers s1, . . . , sk, p − r1, . . . , p − rn is just a re-ordering of
1, . . . , (p− 1)/2. Then we have

((p− 1)/2)! ≡ s1 · · · sk(−r1) · · · (−rn) ≡ (−1)ns1 · · · skr1 · · · rn ≡ (−1)n((p− 1)/2)!a(p−1)/2 (mod p),

and cancelling the factor ((p − 1)/2)!, we obtain a(p−1)/2 ≡ (−1)n (mod p), and the result follows
from the fact that (a | p) ≡ a(p−1)/2 (mod p). 2

Theorem 9.6 If p is an odd prime and gcd(a, 2p) = 1, then (a | p) = (−1)t where t =∑(p−1)/2
j=1 bja/pc. Also, (2 | p) = (−1)(p2−1)/8.

Proof. Let a be an integer relatively prime to p (not necessarily odd), and let us adopt the same
notation as in the proof of Theorem 9.5. Note that ja = pbja/pc+ αj , for 1 ≤ j ≤ k, so we have

(p−1)/2∑
j=1

ja =
(p−1)/2∑
j=1

pbja/pc+
n∑
j=1

rj +
k∑
j=1

sj .

Also, we saw in the proof of Theorem 9.5 that the integers s1, . . . , sk, p − r1, . . . , p − pn are a
re-ordering of 1, . . . , (p− 1)/2, and hence

(p−1)/2∑
j=1

j =
n∑
j=1

(p− rj) +
k∑
j=1

sj = np−
n∑
j=1

rj +
k∑
j=1

sj .

Subtracting, we get

(a− 1)
(p−1)/2∑
j=1

j = p

(p−1)/2∑
j=1

bja/pc − n

+ 2
n∑
j=1

rj .

Note that
(p−1)/2∑
j=1

j =
p2 − 1

8
,

which implies

(a− 1)
p2 − 1

8
≡

(p−1)/2∑
j=1

bja/pc − n (mod 2).

If a is odd,this implies

n ≡
(p−1)/2∑
j=1

bja/pc (mod 2).
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If a = 2, this — along with the fact that b2j/pc = 0 for 1 ≤ j ≤ (p− 1)/2 — implies

n ≡ p2 − 1
8

(mod 2).

The theorem now follows from Theorem 9.5. 2

Note that this last theorem proves part (4) of Theorem 9.4. The next theorem proves part (5).

Theorem 9.7 If p and q are distinct odd primes, then

(p | q)(q | p) = (−1)
p−1

2
q−1

2 .

Proof. Let S be the set of pairs of integers (x, y) with 1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ (q − 1)/2.
Note that S contains no pair (x, y) with qx = py, so let us partition S into two subsets: S1 contains
all pairs (x, y) with qx > py, and S2 contains all pairs (x, y) with qx < py. Note that (x, y) ∈ S1

if and only if 1 ≤ x ≤ (p − 1)/2 and 1 ≤ y ≤ bqx/pc. So |S1| =
∑(p−1)/2

x=1 bqx/pc. Similarly,
|S2| =

∑(q−1)/2
y=1 bpy/qc. So we have

p− 1
2

q − 1
2

= |S| = |S1|+ |S2| =
(p−1)/2∑
x=1

bqx/pc+
(q−1)/2∑
y=1

bpy/qc,

and Theorem 9.6 implies
(p | q)(q | p) = (−1)

p−1
2

q−1
2 .

That proves the first statement of the theorem. The second statement follows immediately. 2

9.3 The Jacobi Symbol

Let a, n be integers, where n is positive and odd, so that n = q1 · · · qk, where the qi are odd primes,
not necessarily distinct. Then the Jacobi symbol (a | n) is defined as

(a | n) := (a | q1) · · · (a | qk),

where (a | qj) is the Legendre symbol. Note that (a | 1) = 1 for all a ∈ Z. Thus, the Jacobi symbol
essentially extends the domain of definition of the Legendre symbol. Note that (a | n) ∈ {0,±1}.

Theorem 9.8 Let m,n be positive, odd integers, an let a, b be integers. Then

1. (ab | n) = (a | n)(b | n);

2. (a | mn) = (a | m)(a | n);

3. a ≡ b (mod n) imples (a | n) = (b | n);

4. (−1 | n) = (−1)(n−1)/2;

5. (2 | n) = (−1)(n2−1)/8;

6. if gcd(m,n) = 1, then
(m | n)(n | m) = (−1)

m−1
2

n−1
2 .
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Proof. Parts (1)–(3) follow directly from the definition (exercise).
For parts (4) and (6), one can easily verify (exercise) that for odd integers n1, . . . , nk,

k∑
i=1

(ni − 1)/2 ≡ (n1 · · ·nk − 1)/2 (mod 2).

Part (4) easily follows from this fact, along with part (2) of this theorem and part (1) of Theorem 9.4
(exercise). Part (6) easily follows from this fact, along with parts (1) and (2) of this theorem, and
part (5) of Theorem 9.4 (exercise).

For part (5), one can easily verify (exercise) that for odd integers n1, . . . , nk,∑
1≤i≤k

(n2
i − 1)/8 ≡ (n2

1 · · ·n2
k − 1)/8 (mod 2).

Part (5) easily follows from this fact, along with part (2) of this theorem, and part (4) of Theorem 9.4
(exercise). 2

As we shall see later, this theorem is extremely useful from a computational point of view —
with it, one can efficiently compute (a | n), without having to know the prime factorization of
either a or n. Also, in applying this theorem it is useful to observe that for odd integers m,n,

• (−1)(n−1)/2 = 1 iff n ≡ 1 (mod 4);

• (−1)(n2−1)/8 = 1 iff n ≡ ±1 (mod 8);

• (−1)((m−1)/2)((n−1)/2) = 1 iff m ≡ 1 (mod 4) or n ≡ 1 (mod 4).

Finally, we note that if a is a quadratic residue modulo n, then (a | n) = 1; however, (a | n) = 1
does not imply that a is a quadratic residue modulo n.
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Chapter 10

Computational Problems Related to
Quadratic Residues

10.1 Computing the Jacobi Symbol

Suppose we are given an odd, positive integer n, along with an integer a, and we want to compute
the Jacobi symbol (a | n). Theorem 9.8 suggests the following algorithm:

t← 1
repeat

— loop invariant: n is odd and positive

a← a rem n
if a = 0

if n = 1 return t else return 0

compute a′, h such that a = 2ha′ and a′ is odd
if h 6≡ 0 (mod 2) and n 6≡ ±1 (mod 8) then t← −t
if a′ 6≡ 1 (mod 4) and n 6≡ 1 (mod 4) then t← −t
(a, n)← (n, a′)

forever

That this algorithm correctly computes the Jacobi symbol (a | n) follows directly from Theo-
rem 9.8. Using an analysis similar to that of Euclid’s algorithm, one easily sees that the running
time of this algorithm is O(L(a)L(n)).

10.2 Testing quadratic residuosity

10.2.1 Prime modulus

For an odd prime p, we can test if a is a quadratic residue modulo p by either performing the
exponentiation a(p−1)/2 rem p or by computing the Legendre symbol (a | p). Using a standard
repeated squaring algorithm, the former method takes time O(L(p)3), while using the Euclidean-
like algorithm of the previous section, the latter method takes time O(L(p)2). So presumably, the
latter method is to be preferred.

61



10.2.2 Prime-power modulus

For an odd prime p, we know that a is a quadratic residue modulo pe if and only if a is a quadratic
residue modulo p. So this case immediately reduces to the previous case.

10.2.3 Composite modulus

For odd, composite n, if we know the factorization of n, then we can also determine if a is a
quadratic residue modulo n by determining if it is a quadratic residue modulo each prime divisor
p of n. However, without knowledge of this factorization (which is in general believed to be hard
to compute), there is no efficient algorithm known. We can compute the Jacobi symbol (a | n); if
this is −1 or 0, we can conclude that a is not a quadratic residue; otherwise, we cannot conclude
much of anything.

10.3 Computing modular square roots

10.3.1 Prime modulus

Let p be an odd prime, and suppose that (a | p) = 1. Here is one way to compute a square root of
a modulo p, assuming we have at hand an integer y such that (y | p) = −1.

Let α = [a mod p] ∈ Z∗p and γ = [y mod p] ∈ Z∗p. The above problem is equivalent to finding
β ∈ Z∗p such that β2 = α.

Let us write p − 1 = 2hm, where m is odd. For any δ ∈ Z∗p, δm has order dividing 2h. Since
α2h−1m = 1, αm has order dividing 2h−1. Since γ2h−1m = [−1 mod p], γm has order precisely 2h.
Since there is only one subgroup in Z∗p of order 2h, it follows that γm generates this subgroup, and
that αm = γmx for 0 ≤ x < 2h and x is even. We can find x by computing the discrete logarithm
of αm to the base γm, using the algorithm in §8.2.3. Setting κ = γmx/2, we have

κ2 = αm.

We are not quite done, since we now have a square root of αm, and not of α. However, because
gcd(m, 2) = 1, we can find integers s, t such that ms + 2t = 1. In fact, s = 1 and t = −bm/2c do
the job. It then follows that

(κsαt)2 = κ2sα2t = αmsα2t = αms+2t = α.

Thus, κsαt is a square root of α.
The total amount of work done outside the discrete logarithm calculation amounts to just a

handful of exponentiations modulo p, and so takes time O(L(p)3). The time to compute the discrete
logarithm is O(h log hL(p)2). So the total running time of this procedure is

O(L(p)3 + h log hL(p)2).

The above procedure assumed we had at hand a non-square γ. If h = 1, i.e., p ≡ 3 (mod 4),
then −1 is a quadratic residue modulo p, and so we are done. In fact, in this case, the the output
of the above procedure is simply α(p+1)/4, no matter what value of γ is used. One can easily show
directly that α(p+1)/4 is a square root of α, without analyzing the above procedure.

If h > 1, we can find a non-square γ using a probabilistic algorithm. Simply choose γ at random,
test if it is a square, and repeat if not. The probability that a random element of Z∗p is a square
is 1/2; thus, the expected number of trials is O(1), and hence the expected running time of this
probabilistic algorithm is O(L(p)2).
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10.3.2 Prime-power modulus

Again, for an odd prime p, we know that a is a quadratic residue modulo pe if and only if a is a
quadratic residue modulo p.

Suppose we have found an integer z such that z2 ≡ a (mod p), using, say, the procedure
described above. From this, we can easily compute a square root of a modulo pe using the following
technique, which is known as Hensel lifting.

More generally, suppose we have integers a, z such that z2 ≡ a (mod pf ), for f ≥ 1, and we
want to find an integer ẑ such that ẑ2 ≡ a (mod pf+1). Clearly, if ẑ2 ≡ a (mod pf+1), then
ẑ2equiva (mod pf ), and so ẑ ≡ ±z (mod pf ). So let us set ẑ = z + upf , and solve for u. We have

ẑ2 ≡ (z + upf )2 ≡ z2 + 2pfu+ u2p2f ≡ z2 + 2pfu (mod pf+1).

So we want to find integer u such that

2pfu ≡ a− z2 (mod pf+1).

Since pf | (z2 − a), by Theorem 2.3, the above congruence holds if and only if

2u ≡ a− z2

pf
(mod p).

From this, we can easily compute the desired value u.
By iterating the above procedure, starting with a square root of a modulo p, we can quickly find

a square root of a modulo pe. We leave a detailed analysis of the running time of this procedure to
the reader.

10.3.3 Composite modulus

To find square roots modulo n, where n is an odd composite modulus, if we know the prime
factorization of n, then we can use the above procedures for finding square roots modulo primes
and prime powers, and then use the algorithm of the Chinese Remainder Theorem to get a square
root modulo n.

However, if the factorization of n is not known, then there is no efficient algorithm known for
computing square roots modulo n. In fact, one can show that the problem of finding square roots
modulo n is at least as hard as the problem of factoring n, in the sense that if there is an efficient
algorithm for computing square roots modulo n, then there is an efficient (probabilistic) algorithm
for factoring n.

Here is an algorithm to find a non-trivial divisor of n — it uses a square root-algorithm as
a subroutine. Choose z ∈ {1, . . . , n − 1} at random. If gcd(z, n) > 1, then output gcd(z, n).
Otherwise, set a := z2 rem n, and feed a and n to the square-root algorithm. If the square-root
algorithm returns an integer z′, and z′ ≡ ±z (mod n), then output “failure”; otherwise, output
gcd(z − z′, n), which is a non-trivial divisor of n.

To analyze this algorithm, let us just consider the case where n = pq, and p and q are distinct
primes. If gcd(z, n) > 1, we split n, so assume that gcd(z, n) = 1. In this case, [z mod n] is
uniformly distributed over Z∗n, and [a mod n] is uniformly distributed over (Z∗n)2. Let us condition
on an a fixed value of a. In this conditional probability space, [z mod n] is uniformly distributed
over the four square roots of a, which under the isomorphism of the Chinese Remainder Theorem,
correspond to

([±z mod p], [±z mod q]) ∈ Zp × Zq.
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Since the square-root algorithm receives no information about z other than the value a, the prob-
ability that z′ ≡ ±z (mod n) is 1/2, in which case we output “failure”; however, if z′ 6≡ ±z, then
we have either

z′ ≡ z (mod p) and z′ ≡ −z (mod q)

or
z′ ≡ −z (mod p) and z′ ≡ z (mod q).

In the first case, gcd(z − z′, n) = p, and in the second case gcd(z − z′, n) = q; in either case, we
split n.

That completes the analysis in the case where n = pq. In general, one can show that for any
odd n that is not a prime power, the above procedure will find a non-trivial factor of n into with
probability at least 1/2. With this, it is easy to obtain an efficient probabilistic algorithm that
completely factors n.
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Chapter 11

Primality Testing

In this chapter, we discuss some simple tests for primality, and also mention some results on the
distribution of primes.

11.1 Trial Division

Suppose we are given a number n, and we want to determine if n is prime or composite. The
simplest algorithm to describe and to program is trial division. We simply divide n by 2, 3, and
so on, testing if any of these numbers evenly divide n. Of course, we don’t need to go any farther
than

√
n, since if n has any nontrivial factors, it must have one that is no greater than

√
n. Other

small optimizations are also possible; for example, we don’t have to test multiples of 2 other than
2, multiples of 3 other than 3, and so on.

This algorithm requires O(
√
n) arithmetic operations, which is exponential in the length of n.

Thus, for practical purposes, this algorithm is limited to quite small n. Suppose, for example, that
n has 100 decimal digits, and that a computer can perform 1 billion divisions per second (this is
much faster than any computer existing today). Then it would take 3× 1035 years to perform

√
n

divisions.
In the next section, we discuss a much faster primality test that allows 100 decimal digit numbers

to be tested for primality less than a second. Unlike the above test, however, this test does not
find a factor of n when n is composite.

11.2 A Fast Probabilistic Test

We describe in this section a fast (polynomial time) test for primality, known as the Miller-Rabin
algorithm. The algorithm, however, is probabilistic, and may (with small probability) make a
mistake.

We assume for the remainder of this section that the number n we are testing for primality is
odd.

Several probabilistic primality tests, including the the Miller-Rabin algorithm, have the follow-
ing general structure. Define Z+

n to be the set of non-zero elements of Zn; thus, |Z+
n | = n− 1 and

if n is prime, Z+
n = Z

∗
n. Suppose also that we define a set Ln ⊂ Z+

n such that

• there is an efficient algorithm that on input n and α ∈ Z+
n , determines if α ∈ Ln;

• if n is prime, then Ln = Z
∗
n;
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• if n is composite, |Ln| ≤ (n− 1)/2.

To test n for primality, we set an “error parameter” t, and choose random elements α1, . . . , αt ∈
Z

+
n . If αi ∈ Ln for all 1 ≤ i ≤ t, then we output “prime”; otherwise, we output “composite.”

It is easy to see that if n is prime, this algorithm always outputs “prime,” and if n is composite
this algorithm outputs “composite” with probability at least 1−2t. If t is chosen large enough, say
t = 100, then the probability that the output is wrong is so small that for all practical purposes, it
is “just as good as zero.”

We now make a first attempt at defining a suitable set Ln. Let us define Ln = {α ∈ Z+
n :

αn−1 = 1}. Note that Ln ⊂ Z∗n, since if αn−1 = 1, then α has a multiplicative inverse, namely,
αn−2. Using a repeated-squaring algorithm, we can test if α ∈ Ln in time O(lg(n)3).

Theorem 11.1 If n is prime, then Ln = Z
∗
n. If n is composite and Ln ( Z∗n, |Ln| ≤ (n− 1)/2.

Proof. Note that Ln is the kernel of the (n− 1)-power map on Z∗n, and hence is a subgroup of Z∗n.
If n is prime, then we know that Z∗n is a group of order n− 1. Hence, αn−1 = 1 for all α ∈ Z∗n.

That is, Ln = Z
∗
n.

Suppose that n is composite and Ln ( Z
∗
n. Since the order of a subgroup divides the order of

the group, we have |Z∗n| = m|Ln| for some integer m > 1. From this, we conclude that

|Ln| =
1
m
|Z∗n| ≤

1
2
|Z∗n| ≤

n− 1
2

.

2

Unfortunately, there are odd composite numbers n such that Ln = Z
∗
n. The smallest such

number is
561 = 3 · 11 · 17.

Such numbers are called Carmichael numbers. They are extremely rare, but it is known that
there are infinitely many of them, so we can not ignore them.

The following theorem characterizes Carmichael numbers.

Theorem 11.2 A positive odd integer n is a Carmichael number if and only if it is square-free of
the form n = p1 · · · pr, where (pi − 1) | (n− 1) for 1 ≤ i ≤ r.

Proof. Suppose n = pe11 · · · perr . By the Chinese Remainder Theorem, we have an isomorphism of
Z
∗
n with the group

Z
∗
p
e1
1
× · · · × Z∗

p
ek
k

,

and we know that each group Z∗
p
ei
i

is cyclic of order pei−1
i (pi − 1). Thus, the (n − 1)-power map

annihilates the group Z∗n if and only if it annihilates each of the groups Z∗
p
ei
i

, which occurs if and

only if pei−1
i (pi− 1) | (n− 1). Now, on the one hand, n ≡ 0 (mod pi). On the other hand, if ei > 1,

we would have n ≡ 1 (mod pi), which is clearly impossible. Thus, we must have ei = 1. 2

To obtain a good primality test, we need to define a different set L′n, which we do as follows.
Let n− 1 = 2hm, where m is odd (and h ≥ 1 since n is assumed odd). Then α ∈ L′n if and only if
αm = 1 or αm2i = [−1 mod n] for some 0 ≤ i < h.

The Miller-Rabin algorithm uses this set L′n, in place of the set Ln defined above.
Note that L′n is a subset of Ln: if αm = 1, then certainly αn−1 = (αm)2h = 1, and if αm2i =

[−1 mod n] for some 0 ≤ i < h, then αn−1 = (αm2i)2h−i = 1.
As a first step in analyzing the Miller-Rabin algorithm, we prove the following:
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Theorem 11.3 Let n be a Carmichael number, and suppose n = p1 · · · pr. Let n−1 = 2hm, where
m is odd, and for 1 ≤ i ≤ r, let pi − 1 = 2himi, where mi is odd. Let h′ = max{hi}, and define
Pn := {u ∈ Z∗n : um2h

′−1
= [±1 mod n]}. Then we have:

(i) h′ ≤ h;

(ii) for all u ∈ Z∗n, um2h
′

= 1;

(iii) Pn is a subgroup of Z∗n, and Pn ( Z∗n.

Proof. As n is Carmichael, each pi − 1 divides n − 1. It follows that h′ ≤ h. That proves (i). It
also follows that mi | m for each i.

Again, by the Chinese Remainder Theorem, we have an isomorphism of Z∗n with the group
Z
∗
p1
× · · · × Z∗pr , where each Z∗pi is cyclic of order pi − 1.
Since each pi− 1 divides m2h

′
, it follows that each Z∗pi is annihilated by the (m2h

′
)-power map.

It follows from the Chinese Remainder Theorem that Z∗n is also annihilated by the (m2h
′
)-power

map. That proves (ii).
To prove (iii), first note that Pn is the pre-image of the subgroup {[±1 mod n]} under the

(m2h
′−1)-power map, and hence is itself a subgroup of Z∗n. Now, h′ = hi for some i, and without

loss of generality, assume i = 1. Let α = [a mod p1] ∈ Z∗p1
be a generator for Z∗p1

. Since α has

order m12h
′
, it follows that αm12h

′−1
has order 2, which means that αm12h

′−1
= [−1 mod p1]. Since

m1 | m and m is odd, it follows that αm2h
′−1

= [−1 mod p1]. By the Chinese Remainder Theorem,
there exists an integer b such that b ≡ a (mod p1) and b ≡ 1 (mod pj) for j 6= 1. We claim that

bm2h
′−1 6≡ ±1 (mod n). Indeed, if bm2h

′−1 ≡ 1 (mod n), then we would have bm2h
′−1 ≡ 1 (mod p1),

which is not the case, and if bm2h
′−1 ≡ −1 (mod n), then we would have bm2h

′−1 ≡ −1 (mod p2),
which is also not the case. That proves Pn ( Z∗n. 2

From the above theorem, we can easily derive the following result:

Theorem 11.4 If n is prime, then L′n = Z
∗
n. If n is composite, then |L′n| ≤ (n− 1)/2.

Proof. Let n − 1 = m2h, where m is odd. For α ∈ Z∗n, let define the sequence of group elements
si(α) := αm2i for 0 ≤ i ≤ h. We can characterize the set L′n as follows: it consists of all α ∈ Z∗n
such that sh(α) = [1 mod n], and for 1 ≤ i ≤ h, si(α) = [1 mod n] implies si−1(α) = [±1 mod n].

First, suppose n is prime. By Fermat’s little theorem, for α ∈ Z∗n, we know that sh(α) =
[1 mod n]. Moreover, if si(α) = [1 mod n] for 1 ≤ i ≤ h, then as si−1(α)2 = [1 mod n], and the
only square roots of [1 mod n] are [±1 mod n], we have si−1(α) = [±1 mod n].

Next, suppose n is composite but is not a Carmichael number. Then the theorem follows from
Theorem 11.1 and the fact that L′n ⊂ Ln.

Finally, suppose that n is a Carmichael number. We claim that L′n ⊂ Pn, where Pn is as
defined in Theorem 11.3. To prove this, let α ∈ Z∗n. Then if h′ is as defined in Theorem 11.3, we
have h′ ≤ h and si(α) = [1 mod n] for h′ ≤ i ≤ h. Now, if in addition, α ∈ L′n, then we have
sh′−1(α) = [±1 mod n], which implies α ∈ Pn. That proves the claim.

Thus, we have shown that L′n is contained in a subgroup Pn of Z∗n, and by Theorem 11.3,
Pn ( Z

∗
n. By the same argument as in the proof of Theorem 11.1, it follows that |L′n| ≤ (n− 1)/2.

2
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The above result is not the best possible. In particular, one can show without too much difficulty
that |L′n| ≤ (n − 1)/4. We do not present this result here. Even this result is overly pessimistic
from an “average case” point of view. It turns out that for “most” odd integers n of a given length,
|L′n| is much smaller than this.

The Miller-Rabin algorithm is widely used in practice. Of course, in a practical implementation,
before applying this test, one would first perform a bit of trial division, testing if n is divisible by
any primes up to some small bound B.

11.3 The Distribution of Primes

In this section, we discuss some facts relating to the distribution of prime numbers, and algorithmic
methods for generating prime numbers.

For a real number x, the function π(x) is defined to be the number of primes up to x. Thus,
π(1) = 0, π(2) = 1, π(7.5) = 4, and so on.

The main theorem in the theory of the distribution of primes is the following.

Theorem 11.5 (Prime Number Theorem) The number of primes up to x is asymptotic to
x/ log x:

π(x) ∼ x/ log x.

A proof of the Prime Number Theorem is beyond the scope of these notes.
However, one consequence of the Prime Number Theorem is that a random k-bit number (i.e.,

a number chosen at random from the interval {2k−1, . . . , 2k− 1}) is prime with probability Θ(1/k).
This fact suggests the following “generate and test” algorithm for generating a random k-bit

prime: choose a k-bit number at random, test it for primality, and repeat until a number is found
that passes the primality test.

We leave it to the reader to verify the following assertions regarding this algorithm:

• The expected number of iterations of this algorithm is O(k).

• If we use a probabilistic primality test, such as the one in the previous section, that may
erroneously report that composite number is prime with probability ε, the probability that
this prime-generating algorithm erroneously outputs a composite number is O(εk) (and not,
in general, O(ε)).

If we use as our primality test the Miller-Rabin algorithm with a given error parameter t, then
we have proven that ε ≤ 2−t, and in fact (although we did not prove it here) ε ≤ 4−t. However, as
we already mentioned, these results are quite pessimistic, and in fact, the above prime-generating
algorithm errs with much smaller probability, so that for t = 1 and sufficiently large k, the error
probability is acceptably small for most practical purposes.

Primes in arithmetic progressions

For some applications, one needs a prime number of a given bit-length k, but with additional special
properties. One convenient property is that p− 1 should be divisible by a prime q of given length
`. So we want an algorithm takes as input k and `, with ` < k, and outputs p and q such that p is
a k-bit prime, q is an `-bit prime, and p ≡ 1 (mod q).

One way to generate p and q is as follows:
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Step 1: Generate an `-bit prime q, using an algorithm such as the “generate and test” algorithm
discussed above.

Step 2: Choose m at random from the interval

I = {x ∈ Z : (2k−1 − 1)/q < x < (2k − 1)/q},

set p = mq + 1 (which is a k-bit integer), and test if p is prime; if not, repeat this step;
otherwise, output p and q.

For what values of k and ` will this algorithm perform reasonably well?
If we view ` as fixed and let k tend to infinity, then Dirichlet’s theorem on primes in arithmetic

progressions tells us that for any `-bit prime q, the probability that m chosen at random from I
yields a prime is Θ(1/k).

However, suppose we want to let both k and ` tend to infinity. Clearly, if k = `+ 1, for a given
q of length `, there is only one possible value for p, namely p = 2q + 1. So if 2q + 1 is not prime,
the above algorithm will never terminate. But suppose that k and ` both tend to infinity, but we
restrict ` so that it is not too big relative to k. For example, we may require that ` < k/3. In this
case, it turns out that there is strong mathematical evidence (namely, the Generalized Riemann
Hypothesis) that the probability that m chosen at random from I yields a prime is Θ(1/k). Thus,
in this case it is reasonable to conjecture, and it is born out in practice, that Step 2 of the above
algorithm terminates on average after Θ(k) iterations.

Sophie Germain primes

Sometimes, one wants a prime p of a given length to satisfy a stronger property; namely, that
p = 2q + 1, where q is prime. Mathemeticians call the prime q in this case a “Sophie Germain”
prime, while cryptographers call the prime p in this case a “strong” or “safe” prime.

It is not known whether there exist an infinite number of strong primes. However, it is conjec-
tured, and supported by experiment, that the probability that a random k-bit number is a strong
prime is Θ(1/k2). The intuition is that a random number p of length k is prime with probability
1/k, and for a random prime p, it does not seem unreasonable to believe that q = (p− 1)/2 is also
prime with roughly the same probability.

If we believe this conjecture, then a reasonable way to generate strong primes is the same
“generate and test” procedure we used above; namely, generate a random k-bit number p, and test
if both p and q = (p− 1)/2 are prime; if so, output p; otherwise, repeat.

11.4 Deterministic Primality Tests

In a very recent breakthrough, Agrawal, Kayal, and Saxena have shown how to test for primality
in deterministic polynomial time (see http://www.cse.iitk.ac.in/primality.pdf). Prior to
this result, no such deterministic, polynomial-time test was known to exist, despite many years of
extensive research in this area. It is not yet clear if this new algorithm will have much impact on
practice. We do not discuss this algorithm any further here.
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