

message via CTR

Output: A ciphertext of length $(|M|+k_{\star})$

- k_0 : key bit length
- k_b : block bit length

Overview (cont'd)	CBC-MAC computation
 Nonce is non-repeating ("fresh") during the lifetime of a key Restrictions on input: Lengths of header and message might be upperbounded by a constant A multiple of 8 or the block length <i>V</i> is the set of all <i>valid</i> inputs (<i>N</i>, <i>H</i>, <i>M</i>), i.e. satisfying all requirements. 	 ◆ Encoding function β β: V → W* where W = {0,1}^{k_b} ◆ Output: B=B₀.B₁B_r ◆ A tag T is derived by applying CBC-MAC to these blocks. ◆ B₀ is the CBC-MAC pre-IV
CBC-MAC computation	CTR encryption
 Encoding function β must satisfy the following: N is uniquely determined by B₀ β is prefix-free: for any two valid and distinct inputs(N, H, M) and (N', H', M') with B=(N, H, M) and B'=(N', H', M') (B ≤ B'), the string consisting of the first B bits of B' does not coincide with B' 	 Encrypt the message <i>M</i> and the CBC-MAC tag <i>T</i>. Use a CTR block-generator π =(i, N, H, M) such that N and counter i can be uniquely determined by the CTR block generator. N ∈ {0,1}^k and 0 ≤ i ≤ μ_{max} where μ_{max} is scheme-specific parameter, determine the maximum number of message blocks <i>number of blocks</i> ≤ μ_{max} · 2^k.
CTR encryption	CTR encryption
Input (N,H,M), generates input blocks of CTR $A_i = \pi (i, N, H, M)$	• Let $\beta_0(N, H, M)$ be equal to the first block B_0 of $\beta(N, H, M)$. We require that
k_t leftmost bits of $E_K(A_0)$ are used for encryption of the tag, while the $ M $ leftmost bits of the string $E_K(A_1).E_K(A_2).E_K(A_3).\cdots$ are used for the encryption of the message $ M $	$\pi(i, N, H, M) \neq \beta_0(N', H', M')$ for all valid (N,H,M), (N',H',M') and $0 \le i \le \mu_{max}$ • The nonce being non-repeating implies that all CTR input blocks A_i , and all CBC-MAC pre-IV's B_0 used during the lifetime of a key are distinct.

CCM Specification • CBC-MAC computation: > Let $B_0 ext{.} B_1 ext{.} B_r = \beta(N, H, M)$ > Let $Y_0 = E_K(B_0)$ > For $0 \le i \le r$, let $Y_i = E_K(Y_{i-1} \oplus B_i)$ > Let T be equal to the k_i leftmost bits of Y_r • CTR encryption: > Let $\mu = [M /k_b]$ > For $0 \le i \le \mu$, $A_i = \pi(i, N, H, M)$ > For $0 \le i \le \mu$, $S_i = E_K(A_i)$ > Let S be equal to the $ M $ leftmost bits of $S_1 ext{.} S_m$ and S' the $ T $ leftmost bits of S_0 > Let $C = [M \oplus S] \cdot [T \oplus S']$	 CCM Specification (Decryption) CCM decryption of a ciphertext <i>C</i> with nonce <i>N</i> and header <i>H</i>: 1.Apply the reverse of step 2 to <i>C</i> to obtain a message <i>M</i> and a CBC-MAC tag <i>T</i> (the CTR block generator is applied on (<i>N</i>, <i>H</i>, <i>C</i> -<i>k</i>_t). 2.Apply CBC-MAC to the obtained message <i>M</i> to get a tag <i>T</i> '. If <i>T</i> = <i>T</i> ', then <i>T</i> 'is valid, and <i>M</i> is output. Otherwise, <i>C</i> is not valid, and an error is output. Note: The decryption operation must not release the message or any part of it, until the the tag has been verified.
Example	Example (cont'd)
• Block cipher: AES, proposed in IEEE 802.11 • Block length $k_b = 128$ • Key length, $k_0 = 128, 192, 256$ • All strings are of length a multiple of 8 • $k_t = 32(16)128$ • $k_n = 56(8)112$ • Number of octets in a message $\leq 2^{120-k_n} - 1$ • $k_{max} = 120 - k_n$, $\mu_{max} = 2^{k_{max}} - 4$ • Each block contains 2^4 octets • Input is valid if	$B_0 = (0b)_2 \cdot (k_t/16 - 1)_3 \cdot (k_{max}/8 - 1)_3 \cdot (N)_{k_n} \cdot (M /8)_{k_{max}}$ $b = 0, \text{ if H is the empty string, 1 o.w. and the two leftmost octets of } B_1, \text{ are equal to } (H /8)_{16}.$ • Let $L_H = (H /8)_{16}$ if $ H > 0$, o.w. the empty string then $\beta(N, H, M) = B_0 \cdot L_H \cdot H \cdot Z_1 \cdot M \cdot Z_2$ where Z_1 and Z_2 are strings with zeros, such that $ L_H \cdot H \cdot Z_1 $ and $ M \cdot Z_2 $ are multiples of the block length 128.

• Input is valid if $N \in \{0,1\}^{k_n}, 0 \le |H|/8 < 2^{16}, 0 \le |M|/8 < 2^{k_{max}}$

Example (cont'd)

- N is uniquely determined by B₀
 β is prefix free
- Input (N, H, M) is uniquely determined by $\beta(N, H, M)$, because of the inclusion of the octet length of H and M

Example (cont'd)

The CTR block generator is defined as

 $\pi(i, N) = (00000)_5 \cdot (k_{max}/8 - 1)_3 \cdot (N)_{k_a} \cdot (i)_{k_{max}}$

This cannot be equal to a CBC-MAC pre-IV B_0 ; the first five bits in B_0 are not all equal to zeros, since $(k_{\scriptscriptstyle t}/16-1)$ is nonzero.

Security analysis - Privacy	Security analysis - Privacy
Goal of the adversary: distinguish the ciphertexts from random gibberish (a bit string chosen uni- formly at random from the set of all possible bit strings of a specified length) N is required to be fresh, so CTR input blocks and the CBC-MAC pre-IV's are new and distinct.	Two attacks: I. A "birthday" attack: All input blocks of CTR are distinct, so no collisions appear among the output blocks, but true random gibberish will contain block collisions, with probability $O(q^2)2^{-b}$ (<i>q</i> number of applications of the block cipher) II. An anomaly can occur inside the CBC-MAC computations (e.g. an internal collision or a tag to coincide with some CTB output
gibberish even if the adversary knows the plain- text.	block). This happens with probability $O(q^2)2^{-b}$
Security analysis - Authenticity Possible to tell anything non-trivial about internal block of the CBC-MAC computation has probabil- ity $O(q^2)2^{-b}$ even if all plaintexts are known. Unless q is very large, the adversary knows close to nothing about the internal block, so mod- ifying any previous encryption query, results in unpredictable modification of the tag. As β is prefix-free, any forgery attempt $B_0. B_1$, is unique. If there is a previous encryption query, then they must differ at some point. Guess the tag: probability less than 2^{-k_i}	