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NNS definition

Prob. Given n points P = {p1, p2, . . . , pn},
preprocess P so as to efficiently answer queries
for finding the point in P closest to a query
point q.

p1

p3
p5

p2
p4

q

Advanced Data Structures 2007 – presentation: Evangelos Bampas 2/28



ε-NNS definition

Prob. Given n points P = {p1, p2, . . . , pn},
preprocess P so as to efficiently answer queries
for finding a point p ∈ P satisfying
(∀p′ ∈ P )[d(p, q) ≤ (1 + ε)d(p′, q)], for a query
point q.
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Results

Algorithms for ε-NNS in ldp with:

ε p preprocessing query

ε > 0 1 or 2 Õ(n1+1/(1+ε) + dn) Õ(dn1/(1+ε))

0 < ε < 1 arbitrary Õ(n)×O(1/ε)d Õ(d)

ε > 0 1 or 2 (nd)O(1) Õ(d)
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PLEB definition
Prob. Given r > 0 and n points
C = {c1, c2, . . . , cn} in (X, d), devise a data
structure that, for any query q ∈ X:

if ∃ci ∈ C s.t. q ∈ B(ci, r), returns ci, else
returns NO
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ε-PLEB definition
Prob. Given r > 0 and n points
C = {c1, c2, . . . , cn} in (X, d), devise a data
structure that, for any query q ∈ X:

if ∃ci ∈ C s.t. q ∈ B(ci, r), returns YES
and some c′i ∈ C s.t. q ∈ B(c′i, (1 + ε)r).

if ∀ci ∈ C q 6∈ B(ci, (1 + ε)r), returns NO.

otherwise, returns either YES or NO.
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A simple reduction from ε-NNS to
ε-PLEB

let m be the smallest and M be the largest
inter-point distances in P .

Find the smallest l such that for some pi,
q ∈ B(pi, m(1 + ε)l).

binary search in
{m, m(1 + ε), m(1 + ε)2, . . . , M}.

Return pi as an approximate nearest
neighbour.

d(q, pi) > (1 + ε)d(q, p?)⇒

d(q, p?) < d(q,pi)
1+ε ≤

m(1+ε)l

1+ε = m(1 + ε)l−1
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Definition of (α1, α2, β)-ring sepa-
rator for P

p

r1

r2

#points inside the r1 circle ≥ a fraction α1 of |P |

#points outside the r2 circle ≥ a fraction α2 of |P |

r2

r1

= β

β > 1, α1, α2 > 0
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Definition of (γ, δ)-cluster for P

r

A subset S ⊂ P such that, for each p ∈ S:

#points in B(p, r) ≤ δ|P |

r = γ∆(S)

0 < γ, δ < 1
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Existence of ring-separator or clus-
ter
Thm. For any P , 0 < α < 1, β > 1:

either P has an (α, α, β)-ring separator,

or P has a ( 1
2β , α)-cluster of size at least

(1− 2α)|P |.
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Existence of ring-separator or clus-
ter
Thm. For any P , 0 < α < 1, β > 1:

either P has an (α, α, β)-ring separator,

or P has a ( 1
2β , α)-cluster of size at least

(1− 2α)|P |.

Proof. For any point p ∈ P define functions:

f∞p (r) = |P −B(p, βr)|

f 0
p (r) = |P ∩B(p, r)|

∃rp such that f 0
p (rp) = f∞p (rp).
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Existence of ring-separator or clus-
ter
Thm. For any P , 0 < α < 1, β > 1:

either P has an (α, α, β)-ring separator,

or P has a ( 1
2β , α)-cluster of size at least

(1− 2α)|P |.

Assuming P does not have an (α, α, β)-ring
separator, we must have:

f 0
p (rp) = f∞p (rp) ≤ αn

Pick a point q with minimum rq.
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Existence of ring-separator or clus-
ter
Thm. For any P , 0 < α < 1, β > 1:

either P has an (α, α, β)-ring separator,

or P has a ( 1
2β , α)-cluster of size at least

(1− 2α)|P |.

qrq

rq

S
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Existence of ring-separator or clus-
ter
Thm. For any P , 0 < α < 1, β > 1:

either P has an (α, α, β)-ring separator,

or P has a ( 1
2β , α)-cluster of size at least

(1− 2α)|P |.

qrq

rq

S

|S| ≥ (1− 2α)n

∆(S) ≤ 2βrq

|P ∩B(s, γ∆(S))| ≤

|P ∩B(s, rq)| ≤

|P ∩B(s, rs)| ≤ αn
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Definition of (b, c, d)-cover for S⊂P

A sequence A1, . . . , Al of sets Ai ⊂ P with

S ⊂ A ,
⋃

i Ai such that ∃r ≥ d∆(A) satisfying,
for each i = 1, . . . , l:

1

b

∣

∣

∣

∣

∣

∣

P ∩





⋃

p∈Ai

B (p, r)





∣

∣

∣

∣

∣

∣

≤ |Ai| ≤ c |P |

where b > 1, 0 < c < 1, d > 0.
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Constructing a cover for a cluster

Thm. S: (γ, δ)-cluster for P  A1, . . . , Ak ⊂ P :
(b, δ, γ

(1+γ) logb n)-cover for S, ∀b > 1.

Alg. Cover:
r ← γ∆(S)

logb n
; j ← 0;

repeat j ← j + 1; pick pj ∈ S; Aj ← {pj};

while |P ∩
⋃

q∈Aj
B(q, r)| > b|Aj| do

Aj ← P ∩
⋃

q∈Aj
B(q, r);

S ← S − Aj ; P ← P − Aj ;

until S = ∅;

k ← j;
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Towards Ring-Cover Trees

Cor. For any P , 0 < α < 1, β > 1, b > 1, one of
the following holds:

either P has a (α, α, β)-ring separator
R(p, r, βr),

or there is a (b, α, d)-cover for some S ⊂ P

with |S| ≥ (1− 2α)|P | and d = 1
(1+2β) logb |P |

.

At the root of the Ring-Cover Tree is P . Its nodes
are tagged as ring nodes or cover nodes according
to which of the above cases holds.
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Construction of Ring-Cover Trees

work with β = 2(1 + 1
ε
), b = 1 + 1

log2 n
, α = 1

2
(1− 1

log n
)

Case 1. P is a ring node with separator R(p, r, βr).

children: S1 = P ∩B(p, βr), S2 = P −B(p, r).

store ring separator data in the node.
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Construction of Ring-Cover Trees

Case 2. P is a cover node with cover {Ai} for
S ⊂ P .

children: S0 = P − A, Si = P ∩
⋃

p∈Ai
B(p, r),

where r = γ∆(S)
logb n = ∆(S)

2β logb n .

set r0 ← (1 + 1
ε )∆(S), ri ←

r0

(1+ε)i , for

i ∈ {1, . . . , k} where k = log1+ε
(1+1/ε) logb n

γ + 1.

Store PLEB instances 〈ri, A〉 in the node.

Thm. The Ring-Cover Tree can be constructed in

deterministic Õ(n2) time.

Advanced Data Structures 2007 – presentation: Evangelos Bampas 15/28



Searching in a Ring-Cover Tree

Search(q, P )

If P is a ring node with an (α, α, β)-ring separator
R(p, r, βr), and if d(p, q) ≤ r(1 + 1/ε):

return Search(q, S1)

Proof. For any s ∈ P − S1,
d(s, q) ≥ d(s, p)− d(q, p) ≥ βr − d(q, p) ≥
2(1 + 1/ε)r − (1 + 1/ε)r = (1 + 1/ε)r ≥ d(q, p)
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Searching in a Ring-Cover Tree

Search(q, P )

If P is a ring node with an (α, α, β)-ring separator
R(p, r, βr), and if d(p, q) > r(1 + 1/ε):

compute p′ = Search(q, S2) and return minq(p, p
′)

Proof. For any s ∈ P − S2 = B(p, r),
d(q, s) ≥ d(q, p)− d(s, p) ≥ d(q, p)− r. Therefore,
d(q,p)
d(q,s) ≤

d(q,p)
d(q,p)−r = 1 + r

d(q,p)−r ≤ 1 + ε
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Searching in a Ring-Cover Tree

Search(q, P )

If P is a cover node with a (b, α, d)-cover
A1, . . . , Al of radius r for S ⊂ P , and if
(∀a ∈ A)[d(q, a) > r0]:

compute p = Search(q, P −A), pick any a ∈ A and
return minq(p, a)
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Searching in a Ring-Cover Tree

Search(q, P )

If P is a cover node with a (b, α, d)-cover
A1, . . . , Al of radius r for S ⊂ P , and if
(∃a ∈ A)[d(q, a) ≤ r0] but (∀a′ ∈ A)[d(q, a′) > rk]:

find an ε-NN p of q in A by binary search in ri’s,
compute p′ = Search(q, P − A) and return
minq(p, p

′)
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Searching in a Ring-Cover Tree

Search(q, P )

If P is a cover node with a (b, α, d)-cover
A1, . . . , Al of radius r for S ⊂ P , and if
(∃a ∈ Ai)[d(q, a) ≤ rk]:

return Search(q, Si)
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Properties of Ring-Cover Trees

depth O(log2 n).

the Search procedure requires O(log2 n× log k)
distance computations or PLEB queries.

space O(npolylogn) not counting PLEB
implementation space.

given an f(n)-space algorithm for PLEB, total
space is O(f(npolylogn)).

for any PLEB instance 〈A, r〉 in a cover node,
∆(A)

r = O(1+ε
γ logb n).
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Solving ε-PLEB

2 methods:

Bucketing

works for 0 < ε < 1 and any lp norm

Locality-Sensitive Hashing

applies directly only to Hamming spaces

works for ld1 and ld2 by embedding those
into suitable Hamming spaces
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The Bucketing Method

Impose a uniform grid of spacing ε/d1/p on R
d.

For each ball B, store all cuboids intersecting
B in a hash table (together with information
about B).

To answer query q, compute the cell
containing q and check if it is in the table.

#cuboids intersecting B is O(1/ε)d, therefore

space is O(n)×O(1/ε)d.

Hash function evaluation in O(d) time, access
time O(1).
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Similarity measures

Define a ball of radius r for a similarity
measure D as B(q, r) = {p : D(q, p) ≥ r}.

Generalize ε-PLEB to (r1, r2)-PLEB, where
for any query point q:

if P ∩B(q, r1) 6= ∅ answer YES

if P ∩B(q, r2) = ∅ answer NO
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Definition of locality-sensitive
functions

Def. A family H = {h : S → U} is called
(r1, r2, p1, p2)-sensitive for D if for any q, p ∈ S:

p ∈ B(q, r1)⇒ PrH[h(q) = h(p)] ≥ p1

p 6∈ B(q, r2)⇒ PrH[h(q) = h(p)] ≤ p2

When D is a similarity measure, we should have
r1 > r2 and p1 > p2.
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An algorithm for (r1, r2)-PLEB

For k and l to be fixed later:

define a family G = {g : S → U k} with
g(p) = (h1(p), . . . , hk(p)). Pick g1, . . . , gl ∈ G
uniformly at random.

preprocessing: store each p ∈ P in buckets
g1(p), . . . , gl(p).

query: search buckets g1(q), . . . , gl(q) until you
find 2l elements, resulting in t discrete
elements p1, . . . , pt. If for some pj,
pj ∈ B(q, r2) then return YES and pj, else
return NO.
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Fixing the parameters k and l

We fix the parameters k and l to ensure that with
constant probability the following properties hold:

if ∃p? ∈ B(q, r1) then (∃j)[gj(p
?) = gj(q)].

the total number of collisions of q with points
in P −B(q, r2) is less than 2l.

Can be done, given an (r1, r2, p1, p2)-sensitive
family for D. Results in a O(dn + n1+ρ)-space and
O(nρ)-time algorithm for (r1, r2)-PLEB.
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Existence of a locality-sensitive
family for the Hamming metric
Thm. For any r, ε > 0 the family
H = {hi : hi((b1, . . . , bd)) = bi, i = 1, . . . , n} is
(

r, r(1 + ε), 1− r
d , 1−

r(1+ε)
d

)

-sensitive for the

Hamming distance in Hd.

Cor. For any ε > 0, there is an algorithm for
ε-PLEB in Hd using O(dn + n1+1/(1+ε)) space and

O(n1/(1+ε)) hash function evaluations for each
query. The hash function can be evaluated using
O(d) operations.
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