Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality

Piotr Indyk and Rajeev Motwani

NNS definition

• Prob. Given n points $P = \{p_1, p_2, \dots, p_n\}$, preprocess P so as to efficiently answer queries for finding the point in P closest to a query point q.

p₃

)p₅

 p_1

ϵ -NNS definition

• Prob. Given *n* points $P = \{p_1, p_2, \dots, p_n\}$, preprocess *P* so as to efficiently answer queries for finding a point $p \in P$ satisfying $(\forall p' \in P)[d(p,q) \leq (1+\epsilon)d(p',q)]$, for a query point *q*.

0		p	
ϵ	p	preprocessing	query
$\epsilon > 0$	1 or 2	$\tilde{O}(n^{1+1/(1+\epsilon)} + dn)$	$\tilde{O}(dn^{1/(1+\epsilon)})$
$0 < \epsilon < 1$	arbitrary	$\tilde{O}(n) \times O(1/\epsilon)^d$	$\tilde{O}(d)$
$\epsilon > 0$	1 or 2	$(nd)^{O(1)}$	$ ilde{O}(d)$

PLEB definition

Prob. Given r > 0 and n points $C = \{c_1, c_2, \ldots, c_n\}$ in (X, d), devise a data structure that, for any query $q \in X$:

if $\exists c_i \in C$ s.t. $q \in B(c_i, r)$, returns c_i , else returns NO

ϵ -PLEB definition

- Prob. Given r > 0 and n points $C = \{c_1, c_2, \ldots, c_n\}$ in (X, d), devise a data structure that, for any query $q \in X$:
 - if $\exists c_i \in C$ s.t. $q \in B(c_i, r)$, returns YES and some $c'_i \in C$ s.t. $q \in B(c'_i, (1 + \epsilon)r)$.
 - if $\forall c_i \in C \ q \notin B(c_i, (1+\epsilon)r)$, returns NO.
 - otherwise, returns either YES or NO.

A simple reduction from ϵ -NNS to ϵ -PLEB

- let m be the smallest and M be the largest inter-point distances in P.
- Find the smallest l such that for some p_i , $q \in B(p_i, m(1 + \epsilon)^l).$
 - binary search in $\{m, m(1 + \epsilon), m(1 + \epsilon)^2, \dots, M\}.$
- Return p_i as an approximate nearest neighbour.

$$d(q, p_i) > (1 + \epsilon)d(q, p^*) \Rightarrow$$
$$d(q, p^*) < \frac{d(q, p_i)}{1 + \epsilon} \le \frac{m(1 + \epsilon)^l}{1 + \epsilon} = m(1 + \epsilon)^{l-1}$$

Existence of ring-separator or cluster Thm. For any P, $0 < \alpha < 1$, $\beta > 1$: • either P has an (α, α, β) -ring separator, • or P has a $(\frac{1}{2\beta}, \alpha)$ -cluster of size at least $(1-2\alpha)|P|.$ Proof. For any point $p \in P$ define functions: • $f_n^{\infty}(r) = |P - B(p, \beta r)|$ • $f_p^0(r) = |P \cap B(p, r)|$ $\exists r_p \text{ such that } f_p^0(r_p) = f_p^\infty(r_p).$

- Existence of ring-separator or claster
 Thm. For any P, 0 < α < 1, β > 1:
 either P has an (α, α, β)-ring separator,
 or P has a (¹/_{2β}, α)-cluster of size at least (1-2α)|P|.
 - Assuming P does not have an (α, α, β) -ring separator, we must have:

$$f_p^0(r_p) = f_p^\infty(r_p) \le \alpha n$$

Pick a point q with minimum r_q .

Existence of ring-separator or chister Thm. For any P, $0 < \alpha < 1$, $\beta > 1$: • either P has an (α, α, β) -ring separator, • or P has a $(\frac{1}{2\beta}, \alpha)$ -cluster of size at least $(1-2\alpha)|P|.$ $|S| \ge (1 - 2\alpha)n$ • $\Delta(S) \leq 2\beta r_a$ $|P \cap B(s, \gamma \Delta(S))| \le$ $|P \cap B(s, r_a)| \leq$ $|P \cap B(s, r_s)| \le \alpha n$

Existence of ring-separator or chister Thm. For any $P, 0 < \alpha < 1, \beta > 1$: • either P has an (α, α, β) -ring separator, • or P has a $(\frac{1}{2\beta}, \alpha)$ -cluster of size at least $(1-2\alpha)|P|.$ $|S| \ge (1 - 2\alpha)n$ • $\Delta(S) \leq 2\beta r_a$ $|P \cap B(s, \gamma \Delta(S))| \le$ $|P \cap B(s, r_a)| \leq$ $|P \cap B(s, r_s)| \le \alpha n$

Definition of (b, c, d)-cover for SCPA sequence A_1, \ldots, A_l of sets $A_i \subset P$ with $S \subset A \triangleq \bigcup_i A_i$ such that $\exists r \geq d\Delta(A)$ satisfying, for each $i = 1, \ldots, l$: $\frac{1}{b} \left| P \cap \left(\bigcup_{p \in A_i} B(p, r) \right) \right| \le |A_i| \le c |P|$ where b > 1, 0 < c < 1, d > 0. Advanced Data Structures 2007 – presentation: Evangelos Bampas 11/28

Constructing a cover for a cluster Thm. S: (γ, δ) -cluster for $P \rightsquigarrow A_1, \ldots, A_k \subset P$: $(b, \delta, \frac{\gamma}{(1+\gamma)\log_{k} n})$ -cover for $S, \forall b > 1$. Alg. Cover: $r \leftarrow \frac{\gamma \Delta(S)}{\log_{1} n}; j \leftarrow 0;$ repeat $j \leftarrow j + 1$; pick $p_i \in S$; $A_i \leftarrow \{p_i\}$; while $|P \cap \bigcup_{q \in A_i} B(q, r)| > b|A_j|$ do $A_j \leftarrow P \cap \bigcup_{q \in A_i} B(q, r);$ $S \leftarrow S - A_i; P \leftarrow P - A_i;$ until $S = \emptyset$; $k \leftarrow j;$

Towards Ring-Cover Trees Cor. For any $P, 0 < \alpha < 1, \beta > 1, b > 1$, one of the following holds: • either P has a (α, α, β) -ring separator $R(p,r,\beta r),$ • or there is a (b, α, d) -cover for some $S \subset P$ with $|S| \ge (1 - 2\alpha)|P|$ and $d = \frac{1}{(1 + 2\beta)\log_{h}|P|}$.

At the root of the Ring-Cover Tree is P. Its nodes are tagged as ring nodes or cover nodes according to which of the above cases holds.

Construction of Ring-Cover Trees
work with
$$\beta = 2(1 + \frac{1}{\epsilon}), b = 1 + \frac{1}{\log^2 n}, \alpha = \frac{1}{2}(1 - \frac{1}{\log n})$$

Case 1. *P* is a ring node with separator $R(p, r, \beta r)$.
• children: $S_1 = P \cap B(p, \beta r), S_2 = P - B(p, r)$.
• store ring separator data in the node.

Construction of Ring-Cover Trees
Case 2.
$$P$$
 is a cover node with cover $\{A_i\}$ for
 $S \subset P$.
• children: $S_0 = P - A$, $S_i = P \cap \bigcup_{p \in A_i} B(p, r)$,
where $r = \frac{\gamma \Delta(S)}{\log_b n} = \frac{\Delta(S)}{2\beta \log_b n}$.
• set $r_0 \leftarrow (1 + \frac{1}{\epsilon})\Delta(S)$, $r_i \leftarrow \frac{r_0}{(1+\epsilon)^i}$, for
 $i \in \{1, \dots, k\}$ where $k = \log_{1+\epsilon} \frac{(1+1/\epsilon)\log_b n}{\gamma} + 1$.
Store PLEB instances $\langle r_i, A \rangle$ in the node.
Thm. The Ring-Cover Tree can be constructed in
deterministic $\tilde{O}(n^2)$ time.

Searching in a Ring-Cover Tree $\operatorname{Search}(q, P)$ If P is a ring node with an (α, α, β) -ring separator $R(p, r, \beta r)$, and if $d(p, q) \leq r(1 + 1/\epsilon)$: return $\text{Search}(q, S_1)$

- Searching in a Ring-Cover Tree
- $\operatorname{Search}(q, P)$
- If P is a ring node with an (α, α, β) -ring separator $R(p, r, \beta r)$, and if $d(p, q) \leq r(1 + 1/\epsilon)$:
- return $\text{Search}(q, S_1)$
- Proof. For any $s \in P S_1$, $d(s,q) \ge d(s,p) - d(q,p) \ge \beta r - d(q,p) \ge$ $2(1+1/\epsilon)r - (1+1/\epsilon)r = (1+1/\epsilon)r \ge d(q,p)$

$\operatorname{Search}(q, P)$

- If P is a ring node with an (α, α, β) -ring separator $R(p, r, \beta r)$, and if $d(p, q) > r(1 + 1/\epsilon)$:
- compute $p' = \text{Search}(q, S_2)$ and return $\min_q(p, p')$

$\operatorname{Search}(q, P)$

- If P is a ring node with an (α, α, β) -ring separator $R(p, r, \beta r)$, and if $d(p, q) > r(1 + 1/\epsilon)$:
- compute $p' = \text{Search}(q, S_2)$ and return $\min_q(p, p')$
- Proof. For any $s \in P S_2 = B(p, r)$, $d(q, s) \ge d(q, p) - d(s, p) \ge d(q, p) - r$. Therefore, $\frac{d(q, p)}{d(q, s)} \le \frac{d(q, p)}{d(q, p) - r} = 1 + \frac{r}{d(q, p) - r} \le 1 + \epsilon$

 $\operatorname{Search}(q, P)$

If P is a cover node with a (b, α, d) -cover A_1, \ldots, A_l of radius r for $S \subset P$, and if $(\forall a \in A)[d(q, a) > r_0]$:

compute p = Search(q, P - A), pick any $a \in A$ and return $\min_q(p, a)$

 $\operatorname{Search}(q, P)$

If P is a cover node with a (b, α, d) -cover A_1, \ldots, A_l of radius r for $S \subset P$, and if $(\exists a \in A)[d(q, a) \leq r_0]$ but $(\forall a' \in A)[d(q, a') > r_k]$:

find an ϵ -NN p of q in A by binary search in r_i 's, compute $p' = \operatorname{Search}(q, P - A)$ and return $\min_q(p, p')$

 $\operatorname{Search}(q, P)$

If P is a cover node with a (b, α, d) -cover A_1, \ldots, A_l of radius r for $S \subset P$, and if $(\exists a \in A_i)[d(q, a) \leq r_k]$:

return $\text{Search}(q, S_i)$

Properties of Ring-Cover Trees

• depth $O(\log^2 n)$.

- the Search procedure requires $O(\log^2 n \times \log k)$ distance computations or PLEB queries.
- space O(npolylogn) not counting PLEB implementation space.
- given an f(n)-space algorithm for PLEB, total space is O(f(n polylogn)).
- for any PLEB instance $\langle A, r \rangle$ in a cover node, $\frac{\Delta(A)}{r} = O(\frac{1+\epsilon}{\gamma} \log_b n).$

Solving ϵ -PLEB

- 2 methods:
 - Bucketing
 - works for $0 < \epsilon < 1$ and any l_p norm
 - Locality-Sensitive Hashing
 - applies directly only to Hamming spaces
 - works for l_1^d and l_2^d by embedding those into suitable Hamming spaces

The Bucketing Method

- Impose a uniform grid of spacing $\epsilon/d^{1/p}$ on \Re^d .
- For each ball *B*, store all cuboids intersecting *B* in a hash table (together with information about *B*).
- To answer query q, compute the cell containing q and check if it is in the table.
- #cuboids intersecting B is $O(1/\epsilon)^d$, therefore space is $O(n) \times O(1/\epsilon)^d$.
- Hash function evaluation in O(d) time, access time O(1).

- Similarity measures
 - Define a ball of radius r for a similarity measure D as $B(q,r) = \{p : D(q,p) \ge r\}.$
 - Generalize ϵ -PLEB to (r_1, r_2) -PLEB, where for any query point q:
 - if $P \cap B(q, r_1) \neq \emptyset$ answer YES
 - if $P \cap B(q, r_2) = \emptyset$ answer NO

- Definition of locality-sensitive functions
 - Def. A family $\mathcal{H} = \{h : S \to U\}$ is called (r_1, r_2, p_1, p_2) -sensitive for D if for any $q, p \in S$: • $p \in B(q, r_1) \Rightarrow Pr_{\mathcal{H}}[h(q) = h(p)] \ge p_1$ • $p \notin B(q, r_2) \Rightarrow Pr_{\mathcal{H}}[h(q) = h(p)] \le p_2$ When D is a similarity measure, we should have
 - $r_1 > r_2$ and $p_1 > p_2$.

An algorithm for (r_1, r_2) -PLEB

For k and l to be fixed later:

- define a family $\mathcal{G} = \{g : S \to U^k\}$ with $g(p) = (h_1(p), \ldots, h_k(p))$. Pick $g_1, \ldots, g_l \in \mathcal{G}$ uniformly at random.
- preprocessing: store each $p \in P$ in buckets $g_1(p), \ldots, g_l(p)$.

• query: search buckets $g_1(q), \ldots, g_l(q)$ until you find 2l elements, resulting in t discrete elements p_1, \ldots, p_t . If for some p_j , $p_j \in B(q, r_2)$ then return YES and p_j , else return NO. Fixing the parameters k and l

We fix the parameters k and l to ensure that with constant probability the following properties hold:

• if $\exists p^* \in B(q, r_1)$ then $(\exists j)[g_j(p^*) = g_j(q)].$

• the total number of collisions of q with points in $P - B(q, r_2)$ is less than 2l.

Can be done, given an (r_1, r_2, p_1, p_2) -sensitive family for D. Results in a $O(dn + n^{1+\rho})$ -space and $O(n^{\rho})$ -time algorithm for (r_1, r_2) -PLEB.

Existence of a locality-sensitive
family for the Hamming metric
Thm. For any
$$r, \epsilon > 0$$
 the family
 $\mathcal{H} = \{h_i : h_i((b_1, \ldots, b_d)) = b_i, i = 1, \ldots, n\}$ is
 $\left(r, r(1 + \epsilon), 1 - \frac{r}{d}, 1 - \frac{r(1+\epsilon)}{d}\right)$ -sensitive for the
Hamming distance in \mathcal{H}^d .
Cor. For any $\epsilon > 0$, there is an algorithm for
 ϵ -PLEB in \mathcal{H}^d using $O(dn + n^{1+1/(1+\epsilon)})$ space and
 $O(n^{1/(1+\epsilon)})$ hash function evaluations for each
query. The hash function can be evaluated using

O(d) operations.