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NNS definition

= Prob. Given n points P = {p1,p2,...,Pn},
preprocess P so as to efficiently answer queries
for finding the point in P closest to a query
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e-NNS definition

= Prob. Given n points P = {p1,p2,...,Pn},
preprocess P so as to efficiently answer queries
for finding a point p € P satisfying
(Vp' € P)ld(p,q) < (1 +€)d(p', q)], for a query
point gq.




Results
Algorithms for e-NNS in Zg with:

€ p preprocessing query

>0 |lor2 | O+ 4 dn) | O(dn!/1+9)
0 <e< 1| arbitrary O(n) x O(1/€)? O(d)

e >0 1 or 2 (nd)?M) O(d)




PLEB definition

= Prob. Given r > 0 and n points
C ={c1,co,...,c,} in (X, d), devise a data
structure that, for any query q € X:

L

if dc; € C' s.t. ¢ € B(c¢;, ), returns ¢;, else
returns NO




e-PLEB definition

= Prob. Given r > 0 and n points
C ={c1,co,...,c,} in (X, d), devise a data
structure that, for any query q € X:
e if dc; € C' s.t. ¢ € B(c;,r), returns YES
and some ¢, € C' s.t. ¢ € B(c, (1 + €)r).
o if Ve, € C' q & B(c;, (1 + €)r), returns NO.
e otherwise, returns either YES or NO.
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A simple reduction from e—NNM
e-PLEB ;

= let m be the smallest and M be the largest
inter-point distances in P.

= F'ind the smallest [ such that for some p;,
q € B(pi,m(1+¢€)"),
e binary search in
{m,m(1+¢e),m(l+e)?, ..., M}

= Return p; as an approximate nearest
neighbour.

d(q,pi) > (1 +¢€)d(q,p*) =

* dai m El _
d(qyp)<%§ (ffe) =m(1+e)!
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" #points inside the r; circle > a fraction oy of | P|

" #points outside the ry circle > a fraction ay of | P|
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A subset S C P such that, for each p € S:
= #points in B(p,r) < 0|P)
= r = yA(S5)
< y,0<1




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,

m or P has a (%, «)-cluster of size at least

(1 —2a)|P].




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,

= or P has a (%, «)-cluster of size at least
(1 —2a)|P].
Proof. For any point p € P define functions:
= f,°(r) =|P = B(p, fr)]
= fp(r) = PN Bp,r)

Ir,, such that f)(r,) = £;°(r).

p




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,
= or P has a (%, «)-cluster of size at least
(1 —2a)|P].

Assuming P does not have an («, «, §)-ring
separator, we must have:

fp(rp) = f°(rp) < an

Pick a point ¢ with minimum 7.




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,

m or P has a (%, «)-cluster of size at least

(1 —2a)|P].




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,

m or P has a (%, «)-cluster of size at least
(1 —2a)|P].

S| > (1—2a)n

" A(S) <20,

= |PNB(s,7A(9))] <

PﬂB(SarCI)’ S

PN B(s,ry)| < an




ter
Thm. For any P, 0 <a <1, 3> 1:

= either P has an («, a, ()-ring separator,

m or P has a (%, «)-cluster of size at least
(1 —2a)|P].

S| > (1—2a)n

" A(S) <20,

= |PNB(s,7A(9))] <

PﬂB(SarCI)’ S

PN B(s,rs)| <an O




A sequence A, ..., A; of sets A; C P with
S C A= |, A; such that Ir > dA(A) satisfying,

foreach ¢ =1,...,(:

1P| ) Bmr) || <Al <clP

pEA;

where b >1,0<c<1,d>0.




Thm. S ( ,0)-cluster for P ~~ Ay,..., A, C P:
(b, 9, ~)-cover for S, Vb > 1.

(1+’Y)1 0gy, N

Alg. Cover:

YA(S).
logy n ?

T J < 0;

repeat j < j + 1; pick p; € S5 A; « {p;};
while [P0 {J,cq, Blg,r)| > bA;] do
Aj = PN U,ea, Blg,m);
S«—S—-A; P—P—-Aj;

until S = {;

k— J;




Towards Ring-Cover Trees

Cor. Forany P,0<a <1, (3 >1,b>1, one of
the following holds:

= either P has a («, a, §)-ring separator

R(p7 T? ﬁr)7
= or there is a (b, a, d)-cover for some S C P
- 1
with |S] > (1 — 2a)|P| and d = 725 e, P

At the root of the Ring-Cover Tree is P. Its nodes
are tagged as ring nodes or cover nodes according
to which of the above cases holds.




work with 3 =2(1+ 1), b=1+

log12n’ = %(1 ~ o )

Case 1. P is a ring node with separator R(p,r, Or).
= children: Sy = PN B(p,Br), So =P — B(p, 7).

® store ring separator data in the node.




Case 2. P is a cover node with cover {A;} for
S CP.

= children: So =P — A, S;=PnNJ,c Bp,7),

YAS) _ _A(S)
log, n 20 logyn”

where r =

= set g — (1+ 2)A(S), r; < g for

i €41,...,k} where k =log,,. (Hl/‘;)logbn - 1.

Store PLEB instances (r;, A) in the node.

Thm. The Ring-Cover Tree can be constructed in
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Scarching in a Ring-Cover Tree
Search(q, P)

If P is a ring node with an («, a, §)-ring separator
R(p,r, Br), and if d(p, q) < r(1+1/e):

return Search(q, S7)




Scarching in a Ring-Cover Tree
Search(q, P)

If P is a ring node with an («, a, §)-ring separator
R(p,r, Br), and if d(p,q) < r(1+ 1/e€):

return Search(q, S7)

Proof. For any s € P — 57,

d(s,q) > d(s,p) — d(q,p) > Br —d(q,p) >
204+ 1/e)r—(1+1/e)r=(1+1/e)r > d(q,p)




Scarching in a Ring-Cover Tree
Search(q, P)

If P is a ring node with an («, a, §)-ring separator
R(p,r,Br), and if d(p,q) > r(1 + 1/e):

compute p’ = Search(q, S2) and return min,(p, p')




Searching in a Ring-Cover ‘Tree I
. Search(q, P)

If P is a ring node with an («, a, §)-ring separator

R(p,r, Br), and if d(p,q) > r(1 + 1/€):
compute p’ = Search(q, S2) and return min,(p, p')

Proof. For any s € P — 59 = B(p7 7”)»

d(q,s) > d(q,p) —d(s,p) > d(q,p) — r. Therefore,

d(g.p) < dap) 1 d(q;)_r <l4e




Scarching in a Ring-Cover Tree
Search(q, P)

If P is a cover node with a (b, o, d)-cover
Aiq, ..., A; of radius r for S C P, and if
(Va € A)|d(q,a) > ro:

compute p = Search(q, P — A), pick any a € A and
return ming(p, a)




Scarching in a Ring-Cover Tree
Search(q, P)

If P is a cover node with a (b, o, d)-cover
Aq,..., A of radius r for § C P, and if
(Ja € A)|d(q,a) < rg] but (Va' € A)|d(q,a’) > ri:

find an e-NN p of ¢ in A by binary search in r;’s,
compute p' = Search(q, P — A) and return

minq (p7 p/)




Scarching in a Ring-Cover Tree

Search(q, P)

If P is a cover node with a (b, o, d)-cover
Aq,..., A of radius r for § C P, and if

(Ja € A;)|d(q,a) < rgl:

return Search(q, .S;)




Properties of Ring-Cover Trees

= depth O(log®n).
= the Search procedure requires O(log” n x log k)
distance computations or PLEB queries.

= space O(npolylogn) not counting PLEB
implementation space.

= given an f(n)-space algorithm for PLEB, total
space is O( f(npolylogn)).

= for any PLEB instance (A, r) in a cover node,




Solving e-PLEB

2 methods:
= Bucketing

e works for 0 < e < 1 and any [, norm

= Locality-Sensitive Hashing
e applies directly only to Hamming spaces

e works for [¢ and I by embedding those
into suitable Hamming spaces




The Bucketing Method

= Impose a uniform grid of spacing €/d'/? on SR

= For each ball B, store all cuboids intersecting
B in a hash table (together with information

about B).

= To answer query ¢, compute the cell
containing ¢ and check if it is in the table.

= #cuboids intersecting B is O(1/¢€)?, therefore
space is O(n) x O(1/¢)%.

= Hash function evaluation in O(d) time, access




Similarity measures

= Define a ball of radius r for a similarity
measure D as B(q,r) ={p: D(q,p) > r}.

s Generalize e-PLEB to (r1,72)-PLEB, where
for any query point g¢:

o if PN B(q,11) # 0 answer YES
o if PN B(q,ry) =0 answer NO




functions

Def. A family H ={h:S — U} is called
(r1, 79, p1, p2)-sensitive for D if for any ¢,p € S:

= p € B(q,m1) = Prylh(q) = h(p)

> D1

= p & B(q,r2) = Prulh(q) = h(p)] < po

When D is a similarity measure, we should have
r1 > ro and p; > po.




An algorithm for (rq, r9)-PLE.

For k£ and [ to be fixed later:

= define a family G = {g : S — U*} with
g(p) = (h1(p), ..., hi(p)). Pick g1,...,91 € G

uniformly at random.

= preprocessing: store each p € P in buckets
g1(p), -, 91(p)-

= query: search buckets g1(q), ..., g;/(¢q) until you
find 2/ elements, resulting in ¢ discrete
elements py,...,p;. If for some p;,
p; € B(q,r2) then return YES and p;, else




Fixing the parameters £ and [

We fix the parameters £ and [ to ensure that with
constant probability the following properties hold:

= if Ip* € B(q, 1) then (37)[g;(p") = 9;(q)].
= the total number of collisions of ¢ with points
in P — B(q,12) is less than 2.

Can be done, given an (rq, 79, p1, p2)-sensitive
family for D. Results in a O(dn + n'*?)-space and
O(n”)-time algorithm for (ry,ry)-PLEB.




:amﬂy for the Hamming metrlc

Thm. For any 7, € > 0 the family
H: {hz . hz((bl,,bd)) :bZ,Z: 1,...,72} 1S

(r, r(l+¢€),1— 75 1 T(lje))—sensitive for the

Hamming distance in H¢.

Cor. For any € > 0, there is an algorithm for
e-PLEB in H? using O(dn + n'*%/1+9) space and
O(n'/1+9)) hash function evaluations for each

query. The hash function can be evaluated using
O(d) operations.
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