Matthew Damigos

May 21, 2007

«O» «Fr «=»

<

Q>

e T[1,...,n] — text/document array of length n

e P[1,...,m] — pattern array of length m (m < n)

@ P and T are characters drawn from a finite alphabet ¥.

@ P and T are called strings

«O» «F»r «

Slides
9000000000000 00000000O00O0000000000

Problem

String Matching
@ T[1,...,n] — text/document array of length n
e P[1,...,m] — pattern array of length m (m < n)
@ P and T are characters drawn from a finite alphabet ¥.
@ P and T are called strings
Problems:
@ Is there a substring of T matching P?
@ How many substrings of T match P?
@ Where are first/any k occurrences of P in T?

@ Where are all occurrences of P in T?

Slides
900000000000 0000000O0O0000000000000

Problem

String Matching
@ T[1,...,n] — text/document array of length n
e P[1,...,m] — pattern array of length m (m < n)
@ P and T are characters drawn from a finite alphabet ¥.
@ P and T are called strings
Problems:
@ Is there a substring of T matching P?
@ How many substrings of T match P?
@ Where are first/any k occurrences of P in T?

@ Where are all occurrences of P in T?

Two different approaches:
@ Algorithmic approach

@ Data structural approach

A trie is a tree with children branches labeled with distinct letters from
Y. The branches are ordered alphabetically.(we will append a dollar sign,
$, to the end of all strings)

o Coalescing non-branching paths =—> Compact Trie

«O» «F»r « =)

« =

DA

Slides
0800000000000 00000000000000000000

Tries

Definitions

A trie is a tree with children branches labeled with distinct letters from
Y. The branches are ordered alphabetically.(we will append a dollar sign,
$, to the end of all strings)

@ Coalescing non-branching paths =—- Compact Trie

Example trie for the set of strings {ana, ann, anna, anne}

~

()

\)
p = R
ann - anna - anne

Trie Compacted Trie

Let S = tyt> ... t, be a string over an alphabet X. Each string x such
S, and each string S; = t;

that S = uxv for some (possibly empty) strings u and v is a substring of

.t, where 1 < i < n+1is a suffix of S.

«O» «F»r « =

« =

DA

Let S = tyt> ... t, be a string over an alphabet X. Each string x such
that S = uxv for some (possibly empty) strings u and v is a substring of
S, and each string S; = t;...t, where 1 </ < n+ 1 is a suffix of S.

@ 5,11 = € is the empty suffix.

@ The set of all suffixes of S is denoted o(S).

DA

@ A tree-like data structure for solving problems involving strings.
o Compact trie-like data structure.

«O>r «Fr <

it
-

DA

@ A tree-like data structure for solving problems involving strings.
o Compact trie-like data structure.

The suffix tree of text S is a compacted trie on all the suffixes of S. l

«O» «F»r « =

Er <

>

DA

Slides
000@00000000000000000000000000000

Suffix Tree Approach

@ A tree-like data structure for solving problems involving strings.

@ Compact trie-like data structure.

Definition
The suffix tree of text S is a compacted trie on all the suffixes of S.

@ All occurrences of P in time O(|P| + number of occurrences)

@ Find an occurrence of P in S, or determine that one does not exist,
in time O(|P|)

Slides
0008000000000 00000O00000O0O0O0O0000000

Suffix Tree Approach

@ A tree-like data structure for solving problems involving strings.

@ Compact trie-like data structure.

Definition
The suffix tree of text S is a compacted trie on all the suffixes of S.

@ All occurrences of P in time O(|P| + number of occurrences)
@ Find an occurrence of P in S, or determine that one does not exist,
in time O(|P|)
Searching

P occurs in S <= P is a prefix of some suffix of S <= Path for P exists
in SuffixTree(S)

Slides
0008000000000 00000O00000O0O0O0O0000000

Suffix Tree Approach

@ A tree-like data structure for solving problems involving strings.

@ Compact trie-like data structure.

Definition
The suffix tree of text S is a compacted trie on all the suffixes of S.

@ All occurrences of P in time O(|P| + number of occurrences)
@ Find an occurrence of P in S, or determine that one does not exist,
in time O(|P|)
Searching

P occurs in S <= P is a prefix of some suffix of S <= Path for P exists
in SuffixTree(S)

@ Building a suffix tree for S string of m characters, in O(m) time
(On-line).
@ The suffix trie of S is a trie representing o(S).

Slides
0000@0000000000000000000000000000

Constructing Suffix Trees - Naive Algorithm

@ Start with a root and a leaf numbered 1, connected by an edge
labeled S$.

o Enter suffixes S[2...m|$, S[3...m]$, ..., S[m]$ into the tree as
follows:

e To insert K; = S[i... m]$, follow the path from the root matching
characters of K; until the first mismatch at character K;[j] (which is
bound to happen)

@ |If the matching cannot continue from a node, denote that node by w
@ Otherwise the mismatch occurs at the middle of an edge, which has
to be split

o If the mismatch occurs at the middle of an edge e = (u,v), let the
label of that edge be a;...a;

o If the mismatch occurred at character ax, then create a new node w,
and replace e by edges (u,w) and (w,v) labeled by a; ... ax—1 and
ak ...dl

e Finally, in both cases (a) and (b), create a new leaf numbered i, and
connect w to it by an edge labeled with Ki[j...|Kil].

Suffix tree of S=papua

papua$
apua$
pua$
ua$

a$

«O>r «Fr <

(O <> <=

«=»

papua$

@
apua

papua

(o T =»

<E>»

apua$

apua

ua

apua

(g Fr <=

<E>»

pua$

*®
apua

ua

ua

apua

(o T «

Tl
v

i
v

ua$

pua

ua

ua

(o < «

apua

it
v

a$

(]
pua

ua

ua

apua

<O «Fr «=>»

<

it
v

o

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)

@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)
@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds
Speed ups
© Suffix Links: speed up navigation to the next extension point in the
tree

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)

@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Speed ups

© Suffix Links: speed up navigation to the next extension point in the
tree

@ Skip/Count Trick: instead of stepping through each character, we
know that we can just jump, as long as we are the right distance

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)
@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds
Speed ups
© Suffix Links: speed up navigation to the next extension point in the
tree
@ Skip/Count Trick: instead of stepping through each character, we
know that we can just jump, as long as we are the right distance

© Edge-Label Compression: since we have a copy of the string, we
don't need to store copies of the substrings for each edge

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)

@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Speed ups
© Suffix Links: speed up navigation to the next extension point in the
tree
@ Skip/Count Trick: instead of stepping through each character, we
know that we can just jump, as long as we are the right distance
© Edge-Label Compression: since we have a copy of the string, we

don't need to store copies of the substrings for each edge
o O(m?) space becomes O(m) space

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)

@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Speed ups

© Suffix Links: speed up navigation to the next extension point in the
tree

@ Skip/Count Trick: instead of stepping through each character, we
know that we can just jump, as long as we are the right distance

© Edge-Label Compression: since we have a copy of the string, we
don't need to store copies of the substrings for each edge

o O(m?) space becomes O(m) space

© Once a leaf, always a leaf: We don’t need to update each leaf, since
it will always be the end of the current string. We can get these
updates for free. (Either maintain a global end-of-string index or
insert the whole string for every leaf)

Slides
0000000000008 00000000000000000000

@ This is an O(m?) time and O(m?) space algorithm (Too much time
and space)

@ We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Speed ups

© Suffix Links: speed up navigation to the next extension point in the
tree

@ Skip/Count Trick: instead of stepping through each character, we
know that we can just jump, as long as we are the right distance

© Edge-Label Compression: since we have a copy of the string, we
don't need to store copies of the substrings for each edge

o O(m?) space becomes O(m) space

© Once a leaf, always a leaf: We don’t need to update each leaf, since
it will always be the end of the current string. We can get these
updates for free. (Either maintain a global end-of-string index or
insert the whole string for every leaf)

Observation

Suffix Trie/Tree of string S can be seen as a DFA: language accepted =
the suffixes of S

Slides
0000000000000 e0000000000000000000

Suffix Trie

The suffix trie of S is the STrie(S)=(Q U {_L}, root, F, g, f) augmented
DFA which has a tree-shaped transition graph representing the trie for
o(S) and which is augmented with the so-called suffix function f and
auxiliary state L.
@ Q is a set of the states of STrie(S) (1-1 correspondence with the
substrings of S).

@ X is the state that corresponds to a substring x.
@ F is the set of the final states corresponds to o(S).

@ The transition function g is defined as g(x,a) =¥, Vx,y € Q such
that y = xa, where o € . Moreover, g(L,) = root

@ The suffix function f is defined Vx € Q as follows: Let X # root.
Then x = ay for some a € ¥, and we set g(x) = y. Moreover,
f(root) =_L.

Q r — top;
@ while g(r, t;) is undefined do

@ create new state r’ and new transition g(r,t;) = r’;

@ if r # top then create new suffix link f(oldr') = r’;
@ oldr' — r';

o r— f(r);
@ create new suffix link f(oldr') = g(r, t;);
Q top — g(top, t;).

DA

Slides
0000000000000 00e00000000000000000

Example: construction of Suffix Trie for S=cacao

1%t jteration:

Initially: g(L,X) = root and f(root) = L

top = root (=€)

r «— root (=€)

g(root,c)=undefined :

New state: r; and New transition: g(root,c)=nr
(Checking if r=top): r=top

oldr' — n

r «— f(root)(= 1)

top «— g(root, c)(= n)

Slides
0000000000000 00e00000000000000000

Example: construction of Suffix Trie for S=cacao

1%t jteration:

Initially: g(L,X) = root and f(root) = L

top = root (=€)

r «— root (=€)

g(root,c)=undefined :

New state: r; and New transition: g(root,c)=nr
(Checking if r=top): r=top

oldr' — n

r «— f(root)(= 1)

top «— g(root, c)(= n)

L

E:'y—i— C‘?

Slides
0000000000000000e0000000000000000

Example (cont.)

24 jteration:
e r— top (=n)
@ g(r,a)=undefined :
o New state: r, and New transition: g(r,a)=n
@ (Checking if r=top): r=top
e oldr' —
e r«— f(r)(= root)
e g(root,a)=undefined :
o New state: r3 and New transition: g(root,a)=r3
o (Checking if r=top): r # top = f(oldr') = f(n)=n
e oldr' «— r3
e r — f(root)(= 1)
e f(r3) < g(L,a)(= root)

Q>

Slides

0000000000000 0000Oe00000000000000

Suffix trees On-line

@ Ukkonen's method (On-line construction of Suffix Trees) constructs
a suffix tree for S[1...m] in time O(m)

@ The method builds, as intermediate results, for each prefix S[1...1],
S[1...2],...,S[1...m] an implicit suffix tree
@ The implicit suffix tree of a string is what results by applying suffix
tree construction to the string without an added end marker $
@ Denote the implicit suffix tree of the prefix S[1.../] by Z;
e 7;: single edge labeled by S[1] leading to leaf 1

@ Phase i+1 updates T from Z; (with all suffixes of S[1.../]) to Zi+1
(with all suffixes of S[1...7+1])

@ Each phase i + 1 consists of extensions j=1,...,i4+1

Slides
0000000000000 000000e0000000000000

Suffix Extension Rules

Rule 1 If S[j.../] leads to a leaf (j), catenate S[i+1] to its edge
label

Rule 2 If path S[j...i] ends before a leaf, and does not continue
by S[i4+1]: Connect the end of the path to a new leaf j by
an edge labeled by char S[i+1]. (If the path ended at the
middle of an edge, split the edge and insert a new node as
the parent of leaf j)

Rule 3 If the path continues by S[i+1], do nothing. (Suffix
S[j...i+1] is already in the tree)

Slides
00000000000000000000e000000000000

Improvement

e Total time for all phases i = 2,...,m+ 1 is ©(m?).

e How to improve this?
o we need to avoid or speed up path traversals (O(m?))

@ Suffix Links: For each internal node v of T "labeled” by xc«, where
x € ¥ and a € ¥, define s(v) to be the node "labeled” by a. Then
a pointer from v to s(v) is the suffix link of v.

o Extension j (of phase i + 1) finds the end of the path S[j... /] in the
tree (and extends it with char S[i+1])

e Extension j+1 finds the end of the path S[j +1.../]

e Assume v is an internal node "labeled” by S[jJa on the path
S[j...i]: we can avoid traversing path o when locating the end of
S[j +1...i], by starting from node s(v)

Slides
000000000000000000000e00000000000

Improvement (cont.)

@ The path SJ[j... /] followed in extension j is in the tree (it is a suffix
of S[1...1])
e no need to check all of its characters; it suffices to choose the
correct edges
@ Let S[k] be the next char to be matched on path S[j...]:
e An edge labeled by S[p...q] can be traversed simply by checking
that S[p] = S[k], and skipping the next ¢ — p chars of S[j.../]
(skip/count)

Slides
000000000000000000000e00000000000

Improvement (cont.)

@ The path SJ[j... /] followed in extension j is in the tree (it is a suffix
of S[1...1])
e no need to check all of its characters; it suffices to choose the
correct edges
@ Let S[k] be the next char to be matched on path S[j...]:
e An edge labeled by S[p...q] can be traversed simply by checking
that S[p] = S[k], and skipping the next ¢ — p chars of S[j.../]
(skip/count)

Using suffix links and the skip/count trick, a single phase takes time

O(m)

Slides
000000000000000000000e00000000000

Improvement (cont.)

@ The path SJ[j... /] followed in extension j is in the tree (it is a suffix
of S[1...1])

e no need to check all of its characters; it suffices to choose the
correct edges
@ Let S[k] be the next char to be matched on path S[j...]:
e An edge labeled by S[p...q] can be traversed simply by checking
that S[p] = S[k], and skipping the next ¢ — p chars of S[j.../]
(skip/count)

Using suffix links and the skip/count trick, a single phase takes time
O(m)

o If path S[j...i+ 1] is already in the tree, so are paths
S[j+1...i+1],...,5[i+1], too = phase i + 1 can be finished at
the first extension j that applies Rule 3; all the rest are void, too

@ Use of compressed edge representation (i.e., indices p and q instead
of substring S[p...q]), and represent the end position of each
terminal edge by a global value e for "the current end position”.

Slides
0000000000000 000000000e0000000000

Suffix-tree on-line: main procedure

Input: String S=1t;1...t,, thy1=9%
o T «— T1
@ while i < n do:
© Set current end-position: e := i + 1; (to implement extensions
1,...,ji implicitly)
© Compute extensions j+1,...,;" until j* > i+ 1 or Rule 3 was
applied in extension j*;
© Set jit1 :=j* — 1; (for the next phase)

Slides
00000000000000000000000e000000000

Example (On-line construction of suffix tree for S=cacao)

@ Initial state: root
@ SLink(root)=root

o T — T
L

Z
c
v
e e=2 (S[2]=a)
@ Rule 1: catenate s[2] to edge S[1]
@ Rule 1: create a arc from root with label=S[2]=a
o inplicitly: slink(“ca*)="a"
e inplicitly: slink(“a*)=root

2
/)

Q>

Q>

Q>

mis

<

o

>

o«

Q>

miSS

<O <Fr o«

it
v

Q>

missi

<O <Fr o«

it
v

Q>

mississippi

. ppi
M pi |
ssippi)
vvvvv ssippi
11§ .rlp; O

<O <Fr o«

Q>

Slides
0000000000000000000000000000000e0

Main Construction Method

o Create Tree(ty); slink(root) := root

e (v, @) := (root, €) /* (v, a) is the start node */

e fori:=2ton+1do

e v =0

@ while there is no arc from v with label prefix at; do

@ if & # € then /* divide the arc w = son(v, an) into two */

e son(v,) := v”; son(v”, t;) :== v"; son(v',n) :=

@ else

@ son(v,t;) == Vv"; v/ :=v

o if v/ # 0 then slink(v') := v”

e v :=v"; v :=slink(v); (v, @) := Canonize(v, «)

e if v/=0 then slink(v’) := v

e (v, «) := Canonize(v, at;) /* (v, a) = start node of the next round
*

Input: string S = t1t5. .. t,$ Output: Tree(S) Notation:

@ son(v,a) = w iff there is an arc from v to w with label «
@ son(v,e) =v

e v:=son(v, o); a :=a"

e while son(v, o) # 0 where a = &/, |&/| > 0 do
e return (v, @)

«O» «F»r «

Er» «E>»

DA

	Slides
	Slides

