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Problem

String Matching

T[1,. . . ,n] → text/document array of length n

P[1,. . . ,m] → pattern array of length m (m ≤ n)

P and T are characters drawn from a finite alphabet Σ.

P and T are called strings

Problems:

Is there a substring of T matching P?

How many substrings of T match P?

Where are first/any k occurrences of P in T?

Where are all occurrences of P in T?

Two different approaches:

Algorithmic approach

Data structural approach
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Tries

Definitions

A trie is a tree with children branches labeled with distinct letters from
Σ. The branches are ordered alphabetically.(we will append a dollar sign,
$, to the end of all strings)

Coalescing non-branching paths =⇒ Compact Trie

Example trie for the set of strings {ana, ann, anna, anne}
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Suffix of a string

Let S = t1t2 . . . tn be a string over an alphabet Σ. Each string x such
that S = uxv for some (possibly empty) strings u and v is a substring of
S, and each string Si = ti . . . tn where 1 ≤ i ≤ n + 1 is a suffix of S.

Sn+1 = ε is the empty suffix.

The set of all suffixes of S is denoted σ(S).
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Suffix Tree Approach

A tree-like data structure for solving problems involving strings.

Compact trie-like data structure.

Definition

The suffix tree of text S is a compacted trie on all the suffixes of S.

All occurrences of P in time O(|P| + number of occurrences)

Find an occurrence of P in S, or determine that one does not exist,
in time O(|P|)

Searching

P occurs in S ⇐⇒ P is a prefix of some suffix of S ⇐⇒ Path for P exists
in SuffixTree(S)

Building a suffix tree for S string of m characters, in O(m) time
(On-line).

The suffix trie of S is a trie representing σ(S).
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Constructing Suffix Trees - Naive Algorithm

Start with a root and a leaf numbered 1, connected by an edge
labeled S$.

Enter suffixes S [2 . . .m]$, S [3 . . .m]$, . . . , S [m]$ into the tree as
follows:

To insert Ki = S [i . . . m]$, follow the path from the root matching
characters of Ki until the first mismatch at character Ki [j ] (which is
bound to happen)

1 If the matching cannot continue from a node, denote that node by w
2 Otherwise the mismatch occurs at the middle of an edge, which has

to be split

If the mismatch occurs at the middle of an edge e = (u,v), let the
label of that edge be a1 . . . al

If the mismatch occurred at character ak , then create a new node w,
and replace e by edges (u,w) and (w,v) labeled by a1 . . . ak−1 and
ak . . . al

Finally, in both cases (a) and (b), create a new leaf numbered i, and
connect w to it by an edge labeled with Ki [j . . . |Ki |].
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Example - papua

Suffix tree of S=papua

papua$
apua$
pua$
ua$
a$
$
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Example - papua
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This is an O(m3) time and O(m2) space algorithm (Too much time
and space)

We need a few implementation speed-ups to achieve the O(m) time
and O(m) space bounds

Speed ups
1 Suffix Links: speed up navigation to the next extension point in the

tree
2 Skip/Count Trick: instead of stepping through each character, we

know that we can just jump, as long as we are the right distance
3 Edge-Label Compression: since we have a copy of the string, we

don’t need to store copies of the substrings for each edge
O(m2) space becomes O(m) space

4 Once a leaf, always a leaf: We don’t need to update each leaf, since
it will always be the end of the current string. We can get these
updates for free. (Either maintain a global end-of-string index or
insert the whole string for every leaf)

Observation

Suffix Trie/Tree of string S can be seen as a DFA: language accepted =
the suffixes of S
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Suffix Trie

The suffix trie of S is the STrie(S)=(Q ∪ {⊥}, root,F , g , f ) augmented
DFA which has a tree-shaped transition graph representing the trie for
σ(S) and which is augmented with the so-called suffix function f and
auxiliary state ⊥.

Q is a set of the states of STrie(S) (1-1 correspondence with the
substrings of S).

x is the state that corresponds to a substring x.

F is the set of the final states corresponds to σ(S).

The transition function g is defined as g(x , α) = y , ∀x , y ∈ Q such
that y = xα, where α ∈ Σ. Moreover, g(⊥, α) = root

The suffix function f is defined ∀x ∈ Q as follows: Let x 6= root.
Then x = αy for some α ∈ Σ, and we set g(x) = y . Moreover,
f(root) =⊥.
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On-line Procedure for building STrie(T i ) from STrie(T i−1)

1 r ← top;
2 while g(r , ti ) is undefined do

1 create new state r ′ and new transition g(r , ti ) = r ′;
2 if r 6= top then create new suffix link f (oldr ′) = r ′;
3 oldr ′ ← r ′;
4 r ← f (r);

3 create new suffix link f (oldr ′) = g(r , ti );

4 top ← g(top, ti ).
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Example: construction of Suffix Trie for S=cacao

1st iteration:

Initially: g(⊥,Σ) = root and f (root) = ⊥
top = root (=ε)

r ← root (=ε)

g(root,c)=undefined :

New state: r1 and New transition: g(root,c)=r1
(Checking if r=top): r=top

oldr ′ ← r1
r ← f (root)(= ⊥)

top ← g(root, c)(= r1)



Slides

Example: construction of Suffix Trie for S=cacao

1st iteration:

Initially: g(⊥,Σ) = root and f (root) = ⊥
top = root (=ε)

r ← root (=ε)

g(root,c)=undefined :

New state: r1 and New transition: g(root,c)=r1
(Checking if r=top): r=top

oldr ′ ← r1
r ← f (root)(= ⊥)

top ← g(root, c)(= r1)



Slides

Example (cont.)

2nd iteration:

r ← top (=r1)

g(r1,a)=undefined :

New state: r2 and New transition: g(r1,a)=r2

(Checking if r=top): r=top

oldr ′ ← r2

r ← f (r1)(= root)

g(root,a)=undefined :

New state: r3 and New transition: g(root,a)=r3

(Checking if r=top): r 6= top ⇒ f (oldr ′) = f (r2) = r3

oldr ′ ← r3

r ← f (root)(= ⊥)

f (r3)← g(⊥, a)(= root)
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Example (cont.)
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Suffix trees On-line

Ukkonen’s method (On-line construction of Suffix Trees) constructs
a suffix tree for S [1 . . .m] in time O(m)

The method builds, as intermediate results, for each prefix S [1 . . . 1],
S [1 . . . 2], . . . , S [1 . . .m] an implicit suffix tree

The implicit suffix tree of a string is what results by applying suffix
tree construction to the string without an added end marker $

Denote the implicit suffix tree of the prefix S [1 . . . i ] by Ii
I1: single edge labeled by S[1] leading to leaf 1

Phase i+1 updates T from Ii (with all suffixes of S [1 . . . i ]) to Ii+1

(with all suffixes of S [1 . . . i + 1])

Each phase i + 1 consists of extensions j = 1, . . . , i + 1
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Suffix Extension Rules

Rule 1 If S [j . . . i ] leads to a leaf (j), catenate S[i+1] to its edge
label

Rule 2 If path S [j . . . i ] ends before a leaf, and does not continue
by S[i+1]: Connect the end of the path to a new leaf j by
an edge labeled by char S[i+1]. (If the path ended at the
middle of an edge, split the edge and insert a new node as
the parent of leaf j)

Rule 3 If the path continues by S[i+1], do nothing. (Suffix
S [j . . . i + 1] is already in the tree)
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Improvement

Total time for all phases i = 2, . . . ,m + 1 is Θ(m3).

How to improve this?
we need to avoid or speed up path traversals (O(m2))

Suffix Links: For each internal node v of T ”labeled” by xα, where
x ∈ Σ and α ∈ Σ∗, define s(v) to be the node ”labeled” by α. Then
a pointer from v to s(v) is the suffix link of v.

Extension j (of phase i + 1) finds the end of the path S [j . . . i ] in the
tree (and extends it with char S[i+1])
Extension j+1 finds the end of the path S [j + 1 . . . i ]
Assume v is an internal node ”labeled” by S [j ]α on the path
S [j . . . i ]: we can avoid traversing path α when locating the end of
S [j + 1 . . . i ], by starting from node s(v)
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Improvement (cont.)

The path S [j . . . i ] followed in extension j is in the tree (it is a suffix
of S [1 . . . i ])

no need to check all of its characters; it suffices to choose the
correct edges

Let S[k] be the next char to be matched on path S [j . . . i ]:
An edge labeled by S [p . . . q] can be traversed simply by checking
that S[p] = S[k], and skipping the next q − p chars of S [j . . . i ]
(skip/count)

Using suffix links and the skip/count trick, a single phase takes time
O(m)

If path S [j . . . i + 1] is already in the tree, so are paths
S [j + 1 . . . i + 1], . . . , S [i + 1], too ⇒ phase i + 1 can be finished at
the first extension j that applies Rule 3; all the rest are void, too

Use of compressed edge representation (i.e., indices p and q instead
of substring S [p . . . q]), and represent the end position of each
terminal edge by a global value e for ”the current end position”.
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Suffix-tree on-line: main procedure

Input: String S = t1 . . . tn, tn+1 = $

T ←− T1

while i ≤ n do:
1 Set current end-position: e := i + 1; (to implement extensions

1, . . . , ji implicitly)
2 Compute extensions j + 1, . . . , j∗ until j∗ > i + 1 or Rule 3 was

applied in extension j∗;
3 Set ji+1 := j∗ − 1; (for the next phase)
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Example (On-line construction of suffix tree for S=cacao)

Initial state: root

SLink(root)=root

T ←− T1

e=2 (S[2]=a)

Rule 1: catenate s[2] to edge S[1]

Rule 1: create a arc from root with label=S[2]=a

inplicitly: slink(“ca“)=“a“

inplicitly: slink(“a“)=root

...
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Example (On-line construction of suffix tree for S=cacao)
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Example - mississippi

m
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Example - mississippi

mi
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Example - mississippi

mis
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Example - mississippi

miss
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Main Construction Method

Create Tree(t1); slink(root) := root

(v, α) := (root, ε) /* (v, α) is the start node */

for i := 2 to n+1 do

v ′ := 0

while there is no arc from v with label prefix αti do

if α 6= ε then /* divide the arc w = son(v, αη) into two */

son(v, α) := v ′′; son(v ′′, ti ) := v ′′′; son(v ′,η) := w

else

son(v,ti ) := v ′′′; v ′′ := v

if v ′ 6= 0 then slink(v ′) := v ′′

v ′ := v ′′; v := slink(v); (v, α) := Canonize(v, α)

if v ′¬0 then slink(v ′) := v

(v, α) := Canonize(v, αti ) /* (v, α) = start node of the next round
*/
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On-line procedure for suffix tree

Input: string S = t1t2 . . . tn$ Output: Tree(S) Notation:

son(v,α) = w iff there is an arc from v to w with label α

son(v,ε) = v

Function Canonize(v, ε):

while son(v, α′) 6= 0 where α = α′α′′, |α′| > 0 do

v := son(v, α′); α := α′′

return (v, α)
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