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The geometry of graphs

Study of graphs from a geometric perspective.

Geometric models: topological, adjacency, metric.

General idea in metric models:
Reduce problems from ‘hard’ to ‘easy’ metric spaces.
How? Using embeddings.
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Metric and Normed spaces

Metric space: a set of points and a distance function.

Normed space: a set of points and a norm
(distance(x , y) = ‖x − y‖).
Norm of x ∈ Rd is ‖x‖ where

‖x‖ ≥ 0
‖λx‖ = |λ| ‖x‖, ∀λ ∈ R
‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀y ∈ Rd .

lp norm: ‖x‖p = ‖(x1, . . . , xd)‖p = p

√∑d
i=1 |xi |p

ldp space: Rd equipped with lp norm
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Embeddings

Embedding: a mapping f : PA −→ PB

PA: points in the (original) metric space, with distance
function D(·, ·)
PB : points in the (host) normed space lds

∀ p, q ∈ PA, and a certain parameter c (distortion):

1

c
· D(p, q) ≤ ‖ f (p)− f (q) ‖s ≤ D(p, q)
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Why embeddings?

Reductions from ‘hard’ to ‘easy’ spaces  
‘Good’ embeddings minimize

the dimension of the host space,
the distortion (isometric, near-isometric).

Widely applicable

Many tools available (combinatorics, functional analysis)
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A Toy Example

Example (Diameter in ld1 )

Given a set P of n points in ld1
find the diameter of P (maxp,q∈P ‖ p − q ‖1)

Solution in O(dn2) time.

Can we reduce the dependence on n?

Yes. We can:

embed ld1 into ld
′

∞, where d ′ = 2d

solve the problem in ld
′

∞

in O(dd ′n) time.
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A Toy Example (cont.)

Solution via embedding:

f (p) =< s0 · p, s1 · p, . . . , s2d−1 · p >,
where si is the ith vector in {−1, 1}d .
Then ‖ f (p)− f (q) ‖∞=‖ f (p − q) ‖∞= maxs |s · (p − q)| =
maxs |

∑d
i=1 si · (p − q)i | = |

∑d
i=1 sgn((p − q)i )(p − q)i | =∑d

i=1 |(p − q)i | = ‖p − q‖1 ⇒ c = 1.

maxp,q∈P ‖ f (p)− f (q) ‖∞=
maxp,q∈P maxi=1,...,d ′ |f (p)i − f (q)i | =
maxi=1,...,d ′(maxp,q∈P |f (p)i − f (q)i |) =
maxi=1,...,d ′(maxp∈P f (p)i −maxq∈P f (q)i ).

Diameter found in: O(d ′n) in ld
′

∞  O(dd ′n) in ld1 .
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Outline of the remainder of the talk

1 Low-distortion low-dimensional embeddings

2 Structural Consequences
Structural consequences to multicommodity flow problems
Structural consequences to separators
Structural consequences to graph decompositions

3 Algorithmic Consequences
Algorithmic consequences to multicommodity flow problems
Algorithmic consequences to separators
Algorithmic consequences to clustering
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Notation

c2(X ) is the least distortion with which a metric space (X , d) may
be embedded in l2 (of any dimension).

(X , d)
≥c2(X )

↪−−−−→ l2,

c2(X ) = O(log n) for an n-point metric space.
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‘Good’ embeddings

Theorem (Johnson-Lindenstrauss, 1984)

For any n-point set in a Euclidean space (X , d), and any ε > 0,

(X , d)
≤1+ε

↪−−−→ l
O( log n

ε2 )

2 ,

in random polynomial time.
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‘Good’ embeddings - Thm 1

Theorem (Bourgain, 1985 - Linial, London, Rabinovich, 1994)

For any n-point metric space (X , d),

(X , d)
O(log n)

↪−−−−→ l
O(log n)
2 .
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Proof

It is an immediate corollary of theorems:

(X , d)
O(c2(X ))

↪−−−−−→ l
O(log n)
p , for any 1 ≤ p ≤ 2,

(X , d)
O(log n)

↪−−−−−→ l
O(log2 n)
p , for any p > 2

in random polynomial time (will be proved later), and

the J-L theorem.
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‘Good’ embeddings - Thm 2

Theorem (Embedding in l2)

For any metric space (X , d),

(X , d)
<c2(X )+ε

↪−−−−−→ l2, for every ε > 0, in polynomial time,

(X , d)
O(c2(X ))

↪−−−−−→ l
O(log n)
2 , in random polynomial time.
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Proof

Consider a matrix M. Let its rows be the images of the points
of X under a distortion-c embedding in some Euclidean space.

Let A = MMt . A is positive semidefinite, and

1

c2
d2
i ,j ≤ ai ,i + aj ,j − 2ai ,j ≤ d2

i ,j , ∀i 6= j .

Now, the ellipsoid algorithm gives us an ε-approximation of c
in polynomial time.

The dimension is reduced to O(log n) by applying J-L
theorem.
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‘Good’ embeddings - Thm 3

Theorem (Embedding in lp, 1 ≤ p ≤ 2, rp-time)

For any metric space (X , d) and for any 1 ≤ p ≤ 2,

(X , d)
O(c2(X ))

↪−−−−−→ l
O(log n)
p ,

in random polynomial time.
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Proof

(X , d)
O(c2(X ))

↪−−−−−→ l
O(log n)
2 in random polynomial time

(previous theorem).

For any m, and any 1 ≤ p ≤ 2,

lm2
O(1)

↪−−−−→ l2m
p

in random polynomial time (known).

(In fact, it is enough to map lm2 isometrically into a random
m-dimensional subspace of l2m

p .)

Any n points in l2 space
1

↪−−−→ l
O(n2)
1 .

In particular, for any finite metric space X , c1(X ) ≤ c2(X ).
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‘Good’ embeddings - Thm 4

Theorem (Embedding in lp, 1 ≤ p ≤ 2, p-time)

For any metric space (X , d) and for any 1 ≤ p ≤ 2,

(X , d)
O(c2(X ))

↪−−−−−→ l
O(n2)
p ,

in polynomial time.
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Sketch of the Proof

We find an optimal embedding into Euclidean space (of
dimension ≤ n):

(X , d)
<c2(X )+ε

↪−−−−−→ l2, ∀ε > 0, in polynomial time

(proved earlier).

We can embed lm2 to l
O(m2)
p , for any 1 ≤ p ≤ 2, in polynomial

time (see details in paper LLR95).

Thereby, we map the n-dimensional Euclidean space we found

to l
O(n2)
p , for any 1 ≤ p ≤ 2:

ln2
O(1)

↪−−−−→ l
O(n2)
p

(details in paper LLR95).
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‘Good’ embeddings - Thm 5

Theorem (Embedding in lp, p > 2, rp-time)

For any metric space (X , d) and for any p > 2,

(X , d)
O(log n)

↪−−−−→ l
O(log2 n)
p ,

in random polynomial time.
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Sketch of the Proof

For each cardinality k < n which is a power of 2,
randomly pick O(log n) sets A ⊆ V (G ) of cardinality k.

Find an embedding: (X , d) ↪−−−→ l log2 n
1 .

Map every vertex x to the vector (d(x ,A)) (where
d(x ,A) = min{d(x , y)|y ∈ A}), with one coordinate for each
A selected.

This mapping has almost surely an O(log n) distortion
(see details in paper LLR95).

For every p ≥ 1, a proper normalization of this embedding
satisfies the same statement with respect to the lp norm
(details in paper LLR95).
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‘Good’ embeddings - Thm 6

Theorem (Embedding of expanders into lp)

For any n-vertex constant-degree expander (Y , d) and for any
1 ≤ p ≤ 2,

(Y , d)
Ω(log n)

↪−−−−→ lp

(of any dimension).
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Sketch of the Proof

The max-flow min-cut gap is Ω(log n) for the all-pairs,
unit-demand flow problem on a constant-degree expander,
where all capacities are one (known).

This gap implies that every embedding of the expander’s
metric in l1 (of any dimension) has distortion Ω(log n)
(see details in paper LLR95).

This conclusion holds also for embeddings into lp for
1 ≤ p ≤ 2, because in this range, every finite dimensional lp
space can be embedded in l1 with a constant distortion
(known).
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Multicommodity flow problem

Multicommodity flow

Flow network G (V ,E ), edge e ∈ E has capacity ce ≥ 0.

k commodities K1,K2, . . . ,Kk

Ki = (si , ti , di ): si and ti is the source and sink of commodity
i , di ≥ 0 is the demand.

The flow of commodity i along edge (u, v) is fi (u, v).

Find maxflow – the largest λ for which it is possible to
simultaneously flow λdi between si and ti∀i , satisfying:

Capacity constraints:
∑k

i=1 fi (u, v) ≤ c(u, v)
Flow conservation:

∑
w∈V fi (u,w) = 0 when u 6= si , ti

Demand satisfaction:
∑

w∈V fi (si ,w) =
∑

w∈V fi (w , ti ) = di .

The problem is NP-complete for integer flows, even for only two
commodities.
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Applications to multicommodity flow - Results

The gap between the max-flow and the min-cut in a
multicommodity flow problem is upper bounded by the least
distortion with which a particular metric (associated with the
network) can be embedded in l1.

This metric is defined via the Linear Programming dual of a
program for the max-flow.

This is the basis for a unified and simple proof to a number of
old and new results on multicommodity flows.
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Separator problem

Separator

Undirected graph G = (V ,E ).

A separator S ⊆ V of G partitions V into two parts A1 ⊆ V
and A2 ⊆ V
such that A1 + S + A2 = V , and no edge joins vertices in A1

and A2

(A1,S ,A2) is called a separation of G .

Goal: minimize |S |, maintaining an appropriate balance
between A1 and A2.
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Applications to separators - Results

Low-dimensional graphs have small separators:

A d-dimensional graph G has a set S of O(dn1− 1
d ) vertices which

separates the graph,
so that no component of G\S has more than (1− 1

d+1 + o(1))n
vertices.
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Graph decomposition problem

Graph decomposition

A decomposition of a graph G = (V ,E ) is a partition of its
vertex set into subsets (blocks).

The diameter of the decomposition is the least δ: any two
vertices belonging to the same connected component of a
block are at distance ≤ δ in the graph.

Usually: decompose a weighted graph into a specified number
of subgraphs such that these subgraphs have balanced sums
of vertex weights and minimal sums of edge weights.
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Applications to graph decompositions - Results

The vertices of any d-dimensional graph can be
(d + 1)-colored so that each monochromatic connected
component has diameter ≤ 2d2.

They can also be covered by ‘patches’ so that each r -sphere
(r – any positive integer) in the graph is contained in at least
one patch, while no vertex is covered more than d + l times.
The diameter of each such patch is ≤ (6d + 2)dr .

Moreover, the patches may be (d + 1)-colored so that equally
colored patches are at distance ≥ 2.

That is, there exist low-diameter decompositions with
parameters depending on the dimension alone.
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Applications to multicommodity flow - Results

Near-tight cuts for multicommodity flow problems can be found
in deterministic polynomial time.
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Applications to separators - Results

Given an isometric (c = 1) embedding of G in d dimensions,

a balanced separator of size O(dn1− 1
d ) can be found in random

polynomial time.
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Clustering problem

Clustering: the partitioning of a set of points into subsets
(clusters), so that the points in the same cluster tend to be much
closer than points in distinct clusters.

Key problem in pattern-recognition.
Easy in low-dimensional Euclidean space.
Very difficult in high-dimensional/non- Euclidean spaces.
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Applications to clustering - Results

Low-dimensional, small-distortion representation of statistical
data offers a new approach to clustering.

Tested in search for patterns among protein sequences.

Metric space: all known proteins.

Thm 2  the distance between any 2 points in the space can
be evaluated in a single time unit!
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Open Problems

Many. . .

Quoting J. Matoušek: Amazing progress in the area during
the last 5 years.

Conjecture (stated by A. Gupta et al. in FOCS ’99)

Excluded-minor graph families can be embedded into l1 with
distortion dependent only upon the set of excluded minors.
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Thank you!
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