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Outline

• Definition
• Examples
• Algebraic methods and the spectral gap theorem
• Applications
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Definition

• Informally: an expander graph is a (multi)graph in which
every subset S of vertices expands quickly, i.e. many edges
connect it to S̄.

• Formally:
◦ ϑS : the set of edges connecting S to S̄.

◦ Expansion parameter : h(G) ≡ minS:|S|≤n/2

|ϑS|
|S|

• A family of graphs Gn is an expander family when
◦ ∀i, Gi is d-regular, for some constant d (therefore, all the

graphs in the family are sparse).
◦ h(Gi) > ε > 0, for some constant ε.
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(Counter-)Examples

• A clique would be an expander graph, if it was sparse.
Any subset S has |ϑS| = |S|(n − |S|). Thus,
h(Kn) = min|S|≤n/2(n − |S|) = n

2
.

• Cycles Cn are not expanders.
The subset S of n/2 consecutive vertices has ϑS = 2. Thus,
h(Cn) ≤ 2

n/2
= 4

n → 0.

• Toroidal n × n grids are not expanders.
An n

2
× n

2
subgrid has ϑS = 2n. Thus,

h(Gn) ≤ 2n
n2/4

= 8

n → 0
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Example

• For p prime, Gp = (Zp, Ep), where
Ep = {(x, y)|y ≡p x ± 1 ∨ y ≡p x−1} ∪ {(0, 1), (0, p − 1)}
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Expander graph constructions

• Mildly Explicit Construction: There is a poly-time algorithm
that given input 1n (in unary) produces the graph in the
family with n vertices.

• Very Explicit Construction: There is a poly-time algorithm
that given input (n, v) (in binary) produces a list of all of v’s
neighbors in the graph.

• Very Explicit Construction ⇒ Mildly Explicit Construction.
• Very Explicit Constructions allow us to perform random

walks on expander graphs of exponential size.
• The previous example was a Very Explicit Construction.
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Deciding on the Expansion property

• Given a graph G, it is hard (co-NP-complete) to decide
whether G is an expander.

• Intuition: there are exponentially many subsets that may
serve as a NO-certificate.

• Algebraic methods can be used to prove that specific
explicitly constructed families are indeed expanders.
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Algebra

• Let A be the adjacency matrix of an expander graph. Its
rows and columns sum up to d.

• Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of A.
• A1 = d1. Thus, d is an eigenvalue of A. Its corresponding

eigenvector is 1.
• A can have no eigenvalue greater than d, therefore, λ1 = d.
• The eigenvectors {1, v2, . . . , vn} of A form an orthogonal

basis, because A is symmetric.

• We will show that h(G) ≥ λ1−λ2

2

Expander Graphs – p. 8/21



The eigenvalue gap

λ1 − λ2

2
≤ h(G) ≤

√

2d(λ1 − λ2)

• We will show that λ2 ≥ d − 2h(G).

• d − 2h(G) = d − 2 |ϑS|
|S| , for some appropriate subset S, with

|S| ≤ n/2 ⇒ |S̄| ≥ n/2 ≥ |S|.
• d − 2 |ϑS|

|S| ≤ d − |ϑS|( 1

|S| + 1

|S̄|
)

• Take a vector v s.t. v = 1S

|S| −
1S̄

|S̄|
. (The vector 1S is the vector

with 1’s for the vertices of S and 0 elsewhere).
We will show that d − |ϑS|( 1

|S| + 1

|S̄|
) = vT Av

vT v .
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The eigenvalue gap

• vT v = |S|
|S|2 + |S̄|

|S̄|2
= 1

|S| + 1

|S̄|

• Observe that 1T
SA1T = |E(S, T )| for S ∩ T = ∅, and

1
T
SA1S = 2|E(S, S)|

• vT Av = 2

|S|2 |E(S, S)| + 2

|S̄|2
|E(S̄, S̄)| − 2

|S||S̄|
|E(S, S̄)|

• 2|E(S, S)| + |E(S, S̄)| = d|S|, 2|E(S̄, S̄)| + |E(S, S̄)| = d|S̄|
• E(S, S̄) = ϑS.

• . . . ⇒ d − |ϑS|( 1

|S| + 1

|S̄|
) = vT Av

vT v
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The eigenvalue gap

• All we need now is vT Av
vT v ≤ λ2.

• But tr(v) = 0 ⇒ v ⊥ 1.
• v can be written as v = a2ṽ2 + a3ṽ3 + . . . + anṽn. (ṽi are the

normalized eigenvectors).

• vT Av
vT v =

P

a2

i
λi

P

a2

i

≤ λ2

• The theorem follows!

λ1 − λ2

2
≤ h(G)
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Applications

• Error-correcting codes.
• New proof of PCP theorem.
• Hardness of approximation proofs.
• Reduction of random bits for randomized algorithms.
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Random walks on expander graphs

• A random walk is the following process: start at an arbitrary
vertex and at each step select one of its edges uniformly at
random. Traverse that edge and repeat the process.

• Suppose we perform a random walk on an expander graph
G. We will show that after a short time we have the same
probability of being on any vertex.

• Since the graph is an expander, there is a low probability of
being “trapped” in a small subset of the vertices for long,
because many edges leave that subset.
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Random walks on expander graphs

• probability distribution p: a vector containing the
probabilities of being at any vertex of G in a specific time.

• After one step the probability distribution will be p′ = Ãp

• Since the graph is d-regular the transition matrix is Ã = A
d .

• The uniform distribution u = 1

n1 is the stationary

distribution, since Ãu = u.
• The question is how fast the random walk converges to the

stationary distribution.
• We will show that this happens exponentially fast.
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Convergence

‖Ãtp − u‖1 ≤ √
nλ̃t

2

• Suppose that p is the initial distribution. This theorem tells
us that we converge to the uniform distribution u
exponentially fast. Proof:

• We will show that ‖Ãtp − u‖2 ≤ λ̃t
2
, and the result follows

because ∀v, ‖v‖2 ≤ √
n‖v‖1

• ‖Ãtp − u‖2 = ‖Ãt(p − u)‖2 because Ãu = u

• The eigenvectors {u = v1, v2, . . . , vn} form an orthonormal
basis. Thus, p − u = a1v1 + a2v2 + . . . + anvn.

• But p − u ⊥ u ⇒ a1 = 0.

• Ãt(p − u) =
∑n

i=2
Ãtaivi =

∑n
i=2

λ̃t
iaivi

• ‖Ãt(p − u)‖2 ≤ ‖∑n
i=2

λ̃t
2
aivi‖ = λ̃t

2
‖p − u‖2 ≤ λ̃t

2
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Non-confinement

• Let B be a subset of the vertices. The probability that a
random walk stays inside that subset for t steps is

Pr[B(t)] ≤ (λ̃2 +
|B|
n

)t

• Proof omitted...

• Note that |B| must be sufficiently small so that λ̃2 + |B|
n < 1.
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Improving the probability of success

• Suppose we have a randomized algorithm for a problem in
RP with probability of failure ≤ 1

2
.

• A standard technique to improve this probability is to run it
several times. Then probability of failure ≤ 1

2t .

• Drawback: if the algorithm needed m random bits, now we
need tm random bits.

• Expander graphs can help us reduce this to m + O(t)
without losing (much) on the amplification!
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Probability Amplification: Intuition

• Observation 1: choosing m random bits is equivalent to
picking uniformly at random a vertex from a graph on 2m

vertices.
• Observation 2: a random walk on an expander graph

quickly converges to the uniform distribution
• Observation 3: a random walk on an expander graph costs

few random bits, because vertices have constant degree.
• → a random walk on an expander graph is a good way to

save random bits, because after a while it is almost like
sampling uniformly at random.
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Method

• Suppose we have a randomized algorithm. Use a very
explicit expander graph construction to produce a graph on
2m vertices, where m is the number of random bits. Each
vertex corresponds to a choice.

• Perform a random walk for t steps, starting from a random
vertex v0 and visiting v1, v2, . . . , vt.

• Run the algorithm successively with random strings
v0, v1, . . . , vt and output the collective answer.

• Random bits used: ≈ m + t log d.

Expander Graphs – p. 19/21



Why this works

• Let B be the set of bad choices of random strings.
• Recall that the probability that a random walk is confined in

B drops exponentially with t.

• λ̃2 + |B|
n < 1 is achievable by repeating the algorithm O(1)

times to make B small enough.
• Bonus: this works for algorithms in BPP as well! Just take

the majority of the outcomes.
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THE END!!!
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