
  

CoNP and Function Problems



  

coNP

 By definition, coNP is the class of problems 
whose complement is in NP.

 NP is the class of problems that have succinct 
certificates.

 coNP is therefore the class of problems that 
have succinct disqualifications:
 A “no” instance of a problem in coNP possesses a 

short proof of its being a “no” instance.
 Only “no” instances have such proofs.



  

coNP (continued)

 Suppose L is a coNP problem.
 There exists a polynomial-time nondeterministic 

algorithm M such that:
 If x  L, then M (x) = “yes” for all computation ∈

paths.
 If x  L, then M (x) = “no” for some computation ∈

path.



  



  

 coNP (concluded)

 Clearly P  coNP.⊆
 It is not known if P = NP ∩ coNP.

 Contrast this with R = RE ∩ coRE



  

Some coNP Problems

 VALIDITY  coNP.∈
 If φ is not valid, it can be disqualified very 

succinctly: a truth assignment that does not satisfy 
it.

 SAT complement  coNP.∈
 The disqualification is a truth assignment that 

satisfies it.

 HAMILTONIAN PATH complement  coNP.∈
 The disqualification is a Hamiltonian path.



  

An Alternative Characterization of coNP

 Let L  Σ  be a language. Then L  coNP if ⊆ ∗ ∈
and only if there is a polynomially decidable 
and polynomially balanced relation R such that 
L = {x : \forall y (x, y)  R}.∈

 L' = {x : (x, y)  ∈ ┐R for some y}.
 Because  ┐R remains polynomially balanced, L 

 NP∈
 Hence L  coNP by definition.∈



  

coNP Completeness

 L is NP-complete if and only if its complement 
L' = Σ  − L is coNP-complete.∗

 Proof ( ; the  part is symmetric)⇒ ⇐
 Let L1' be any coNP language.
 Hence L1  NP.∈
 Let R be the reduction from L1 to L.
 So x  L1 if and only if R(x)  L.∈ ∈
 So x  L1' if and only if R(x)  L'.∈ ∈
 R is a reduction from L1' to L'.



  

 Some coNP-Complete Problems

 SAT complement is coNP-complete.
 SAT complement is the complement of sat.

 VALIDITY is coNP-complete.
 φ is valid if and only if ┐φ is not satisfiable.
 The reduction from sat complement to VALIDITY is 

hence easy.

 HAMILTONIAN PATH complement is coNP-
complete.



  

Possible Relations between P, NP, coNP

1. P = NP = coNP.

2. NP = coNP but P ≠ NP.

3. NP ≠ coNP and P ≠ NP.
• This is current “consensus.”



  

coNP Hardness and NP Hardness

 If a coNP-hard problem is in NP, then NP = 
coNP.

 Let L  NP be coNP-hard.∈
 Let PNTM M decide L.
 For any L1  coNP, there is a reduction R from ∈

L1 to L.
 L1  NP as it is decided by PNTM M(R(x)).∈

 Alternatively, NP is closed under complement.

 Hence coNP  NP.⊆
 The other direction NP  coNP is symmetric.⊆



  

   coNP Hardness and NP Hardness (concluded)

 Similarly, If an NP-hard problem is in coNP, 
then NP = coNP.

 Hence NP-complete problems are unlikely to be 
in coNP and coNP-complete problems are 
unlikely to be in NP.



  

 The Primality Problem

 An integer p is prime if p > 1 and all positive 
numbers other than 1 and p itself cannot divide 
it.

 PRIMES asks if an integer N is a prime number
 Dividing N by 2, 3, . . . ,√ N is not e cient.ffi

 The length of N is only log N , but √N = 20.5 log N .

 A polynomial-time algorithm for primes was not 
found until 2002 by Agrawal, Kayal, and 
Saxena!

 We will focus on e cient “probabilistic” ffi
algorithms for primes (used in practice).



  

ΔNP

 ΔNP ≡ NP ∩ coNP is the class of problems that 
have succinct certificates and succinct 
disqualifications.
 Each “yes” instance has a succinct certificate.
 Each “no” instance has a succinct disqualification.
 No instances have both.

 P  ΔNP.⊆
 We will see that primes  DP.∈

 In fact, primes  P as mentioned earlier.∈



  

Primitive Roots in Finite Fields

 Theorem (Lucas and Lehmer (1927)) A number 
p > 1 is prime if and only if there is a number 
1<r<p (called the primitive root or generator) s.t.

 1. r p−1 = 1 mod p, and
 2. r(p−1)/q = 1 mod p for all prime divisors q of 

p−1.
  Proof excluded.



  

Pratt’s Theorem

 (Pratt (1975)) PRIMES  NP ∩ coNP.∈
 primes is in coNP because a succinct 

disqualification is a divisor.
 Suppose p is a prime.
 p’s certificate includes the r in L.L. Theorem
 Use recursive doubling to check if rp−1=1modp 

in time polynomial in the length of the input,   
log p.

 We also need all prime divisors of p − 1: q1 , q2 
, . . . , qk .

 Checking r(p−1)/qi≠1 mod p is also easy.



  

The Proof (concluded)

 Checking q1 , q2 , . . . , qk are all the divisors of 
p − 1 is easy.

 We still need certificates for the primality of the 
qi ’s.

 The complete certificate is recursive and tree-
like: C(p) = (r; q1 , C(q1 ), q2 , C(q2 ), . . . , qk , 
C(qk )).

 C(p) can also be checked in polynomial time.
 We next prove that C(p) is succinct.



  

The Succinctness of the Certificate

 The length of C(p) is at most quadratic at          
5 log2p.

 This claim holds when p = 2 or p = 3.
 In general, p − 1 has k < log p prime divisors    

q1 = 2, q2 , . . . , qk .
 C(p) requires: 2 parentheses and 2k < 2 log p 

separators (length at most 2 log p long), r 
(length at most log p), q1 = 2 and its certificate 
1 (length at most 5 bits), the qi ’s (length at 
most 2 log p), and the C(qi )s.



  

The Proof (concluded)

 C(p) is succinct because

       |C(p)| ≤ 5 log p + 5 + 5 Σ
i=2

k log2 qi       

                 ≤ 5 log p + 5 + 5  (Σ
i=2

klog2 qi)2       

                 ≤ 5 log p + 5 + 5 log (p-1)/2             

                 < 5 log p + 5 + 5(log2 p − 1)2

                 = 5 log2p + 10 − 5 log2 p ≤ 5 log2p

                                                   for p ≥ 4.



  

Function Problems

 Decisions problem are yes/no problems (sat, 
tsp (d),etc.).

 Function problems require a solution (a 
satisfying truth assignment, a best tsp tour, 
etc.).

 Optimization problems are clearly function 
problems.

 What is the relation between function and 
decision problems?

 Which one is harder?



  

Function Problems Cannot Be Easier than 
Decision Problems

 If we know how to generate a solution, we can 
solve the corresponding decision problem.
 If you can find a satisfying truth assignment 

e ciently, then sat is in P.ffi
 If you can find the best tsp tour e ciently, then ffi

tsp(d) is in P.

 But decision problems can be as hard as 
thecorresponding function problems.



  

FSAT

 FSAT is this function problem:
 Let φ(x1 , x2 , . . . , xn ) be a boolean expression.
 If φ is satisfiable, then return a satisfying truth 

assignment.
 Otherwise, return “no.”

 We next show that if SAT  P, then FSAT has ∈
a polynomial-time algorithm.



  

An Algorithm for FSAT Using SAT

 1: t := ε;

 2: if φ  SAT then∈

 3:    for i = 1, 2, . . . , n do

 4:      if φ[ xi = true ]  SAT then∈

 5:         t := t  { xi = true };∪

 6:         φ := φ[ xi = true ];

 7:      else

 8:         t := t  { xi = false };∪

 9:         φ := φ[ xi = false ];

10:      end if

11:    end for

12:    return t;

13: else

14:    return “no”;

15: end if



  

 Analysis

 There are ≤ n + 1 calls to the algorithm for SAT
 Shorter boolean expressions than φ are used in 

each call to the algorithm for sat.
 So if SAT can be solved in polynomial time, so 

can FSAT.
 Hence SAT and FSAT are equally hard (or 

easy).



  

 TSP and TSP (d) Revisited

 We are given n cities 1, 2, . . . , n and integer 
distances dij = dji between any two cities i and j.

 The TSP asks for a tour with the shortest total 
distance (not just the shortest total distance, as 
earlier).
 The shortest total distance must be at most 2| x| 

where x is the input.

 TSP (d) asks if there is a tour with a total 
distance at most B.

 We next show that if TSP (d)  P, then TSP ∈
has a polynomial-time algorithm.



  

An Algorithm for tsp Using tsp (d)

 1: Perform a binary search over interval [ 0, 2| x | ] by 
calling tsp (d) to obtain the shortest distance C;

 2: for i, j = 1, 2, . . . , n do

 3:   Call tsp (d) with B = C and dij = C + 1;

 4:   if “no” then

 5:      Restore dij to old value; {Edge [ i, j ] is critical.}

 6:   end if

 7: end for

 8: return the tour with edges whose dij ≤ C;



  

 Analysis

 An edge that is not on any optimal tour will be 
eliminated, with its dij set to C + 1.

 An edge which is not on all remaining optimal 
tours will also be eliminated.

 So the algorithm ends with n edges which are 
not eliminated.

 There are O(| x | + n2 ) calls to the algorithm for 
tsp (d).

 So if tsp (d) can be solved in polynomial time, 
so can tsp.

 Hence tsp (d) and tsp are equally hard (or 
easy).



  

FNP and FP

 L € NP iff 
there exists poly-time computable RL(x,y) s.t.

X € L    y { |y| ≤ p(|x|) & RL(x,y) }
 Note how RL defines the problem-language L

 The corresponding search problem ΠR(L) € FNP 
is: given an x find any y s.t. RL(x,y) and reply 
“no” if none exist
 Are all FNP problems self-reducible like FSAT? [open?]

 FP is the subclass of FNP where we only 
consider problems for which a poly-time 
algorithm is known



  

FP <?> FNP

 A proof a-la-Cook shows that FSAT is FNP-
complete

 Hence, if FSAT∈FP then FNP = FP
 But we showed self-reducibility for SAT, so the 

theorem follows:
 Theorem: FP = FNP iff P=NP



  

TFNP

 What happens if the relation R is total? 
 i.e., for each x there is at least one y s.t. R(x,y)
 Define TFNP to be the subclass of FNP where 

the relation R is total
 TFNP contains problems that always have a 

solution, e.g. factoring, fix-point theorems, 
graph-theoretic problems, …

 How do we know a solution exists?
By an “inefficient proof of existence”, i.e. non-

(efficiently)-constructive proof
 The idea is to categorize the problems in TFNP 

based on the type of inefficient argument that 
guarantees their solution



  

Properties of TFNP
1. FP TFNP FNP⊆ ⊆
2. TFNP = F(NP ∩ coNP)

 NP = problems with “yes” certificate y s.t. R1(x,y)

 coNP = problems with “no” certificate z s.t. R2(x,y)

 for TFNP    F(NP ∩ coNP) take R = R1 U R2

 for F(NP ∩ coNP)  TFNP take R1 = R and R2 = ø

3. There is an FNP-complete problem in TFNP iff NP = 
coNP

 : If NP = coNP then trivially FNP = TFNP
 : If the FNP-complete problem ΠR is in TFNP then:

FSAT reduces to ΠR via f and g, hence any unsatisfiable 
formula φ has a “no” certificate y, s.t. R(f(φ),y) (y exists since 
ΠR is in TFNP) and g(y)=“no”

4. TFNP is a semantic complexity class  no complete 
problems!

 note how telling whether a relation is total is undecidable (and 
not even RE!!)



  

ANOTHER HC is in TFNP

 Thm: any graph with odd 
degrees has an even number of 
HC through edge xy

 Proof Idea: 
 take a HC 
 remove edge (1,2) & take a HP
 fix endpoint 1 and start 

“rotating” from the other end
 each HP has two “valid” 

neighbors (d=3) except for 
those paths with endpoints 1,2
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