UNDECIDABILITY

Syrgkanis Vasileios

............
.........




QOutline

» Universal Turing Machine (UMT)

» Recursive(R) and Recursively Enumerable(RE)
» Undecidability

- The Halting Problem

« R and RE Theorems

» Rice Theorem



Universal




Why a Universal Turing Machine

» Proving Undecidability Theorems has at its
essence the action of giving a Turing Machine as
input to another

» The above needs a formal method for encoding a
Turing Machine as an input

- And making another TM (the Universal)
simulate the first



Turing Machines (TM) Notation

« Given aTM, M=(K, %, 0, S)
= K = Set of States
o Y. = Set of Symbols
= § = Transition Function, KUZ—(KUlh"yes',"nd"})xEx ¢ —4—
= § = Initial State

- If a TM halts on input x, we define the output of M
on x as M(x)
» If M accepts or rejects x, then M(x)=“yes” or “no”

o If h state was reached then M(x) is the string of M at
the time of halting



TM Binary Encoding(1)

«x=412,.., |2}

- K=A{|2|+1, |Z|+2, ..., |[Z|+]|K]|}

e s=|X|+1

o |K|[+|Z]+1, ..., |K|+|Z]|+6 = «—, —, —, h, “yes”,

29

no

- [log(k|+|=|+6)| bits to encode each of the above
entities



TM Binary Encoding(2)

- Encode the transition function as ((q,0),(p,p,D))
qg,pe KU {h,"yes","no"}
o,pEL
D e, —,—|



A Simple Example(1)

 Suppose the following TM

> = {a,b}u {l>,_}
K = s
o(s,a)=(s,b,—)
o(s,b)=1(s,a,—)
o(s, ) =(h,_,-)



A Simple Example(2)

- [Z]=4
» 4 bits for each entity

- Construct encoding according
to previous formal description

a — 0001
b — 0010
> — 0011
~— 0100
s — 0101
—>— 0110
«~—— 0111
— — 1000
h — 1001
"yes " — 1010
"no" — 1011




A Simple Example(2)

 The binary encoding of the TM

1S:

(0
(0
(

0

-
p
-
p
-
p

10
10
10

0001,0010,
1,0001),(0101,0010,0110))
1,0010),(0101,0001,0110))

1,0100),(1001,0000,1000)

)

a — 0001
b — 0010
> — 0011
~— 0100
s — 0101
—>— 0110
«~—— 0111
— — 1000
h — 1001
"yes " — 1010
"no" — 1011




Universal TM (UTM)

- ATM U that interprets each input as a
concatenation of a description of another TM
and a description of an input for that TM

> The binary description of x is the binary description of each symbol of x

separated by “,”
UM; x)=M(x)
» Introduced by Turing
« Resembles the von Neumann architecture



An Implementation

 2-string TM
- 15t string contains the binary description M

- 20d string contains the binary description of

current configuration of simulation (w,q,u)



UTM Description(1)

- Initially the 2 strings have the following content:

Binary Description of M
Initial State (s) binary Input (x) binary
ak description ’| description




UTM Description(2)

Search 15t string to find an integer corresponding to State
(between |X|+1 and |Z|+|K])

Search 2md string to find the same integer in the place of q

of some rule ((q,0),(p,p,D))

Move to the next log(|X|+|K|+6) bit word of the 15t string

Does that word match that of the symbol that triggers the rule

Yes

Activate Rule:
1.
2,
3.
4.
not according to D symbol of rule

Change the current state in the 274 string

If Next State is |K|+|XZ|+4 = h then halt

Change the current symbol in 274 string

Move the binary description of the state on word left or right or

No



Simple Example Simulation

~
~

a — 0001
b — 0010
>— 0011
~— 0100
s — 0101
—— 0110
«~—— OI11
— — 1000
h — 1001
"yes "— 1010
"no"— 1011

TM encoding




Recursive and Recursively

Enumerapble |
Basic Definitions




Recursive (R) Language

- L1is a recursive language if there exista TM M
that decides L.

- That is: for any string x:

o If x is in L then M(x)=“yes” (TM halts at the “yes”
state)

o If x is not in L then M(x)=“no” (TM halts at the
“no” state)

« Hence, Not Recursive means Undecidable



Recursively Enumerable (RE) Language

- L1is a recursive language if there exista TM M
that accepts L.

- That is: for any string x:

o If x is in L then M(x)=“yes” (TM halts at the “yes”
state)

= If x is not in L then M(x) doesn’t halt

 Only useful for categorizing problems, not an
algorithmic concept



RE Language(2)

o If L. 1s in RE then there is TM that enumerates all

its elements without repeating any of them

 Let M, the TM that accepts L

- Run M for all possible strings of the symbols of L
(e.g. in lexicographic order)

- When a string is accepted output it



RE Language(3)

» Do it the following way:

s4 S5

LN ) m
111 L

- Eventually all s; in L. would be enumerated




Language Classes

Context-free

Regular



Undecidalbility



Undecidability(1)

- Undecidable problem
= A problem with no algorithm
- Undecidable language
= A language that is not recursive

- Universal TM immediately led to prove that
some problems are undecidable



Undecidability(2)

- It is an immediate consequence of the following
two facts
. Languages are not enumerable (using diagonalization)
= Turing machines are enumerable (pinary encoding described

in first part is a valid encoding from TMs to natural numbers)

- Hence, there must be languages that cannot be
decided by a TM



Undecidability(3)

- First undecidable problems/languages introduced in
1936

s April: Church introduced an undecidable problem in
lambda calculus

= May: Turing introduced the halting problem

- Strong connection with Godel’s incompleteness
theorems (1931)
= Similar proofs used in both theories

» A weaker form of First Incompleteness Theorem is an
immediate consequence of the Halting Problem



The Halting Problem

Not just any recursively enumerable language




HALTING (H)

» Given the description of a TM M and its input x
Will M halt on x ?

- H is a language on the alphabet of UTM
{M;x:M(x);tT}

- H is Recursively Enumerable

s Proof #1 Outline: The UMT accepts H with
a slight modification



Recursively Enumerable Complete

« Suppose a TM My could decide HALTING

- Then deciding any recursively enumerable language
L accepted by a TM M could be reduced to My

« Just check if M;x is accepted by My

- Similar concept to NP-Completeness though here we

have a proof that H is not in R so we know that
R+RE



H is Not Recursive (Undecidable)

 H 1s not recursive
 Proof Outline: Diagonalization
» Use the program
= D(M): if M(M;M)=“yes” then T else “yes”
- And produce a contradiction

« Hence there is no My that decides H



Diagonalization

I K K KT B

accepts rejects accepts accepts accepts
rejects accepts rejects rejects accepts
accepts rejects rejects accepts

accepts rejects accepts accepts accepts

accepts rejects accepts accepts 2

D(M): if My(M;M)="yes” then T else “yes”



Other Non Recursive Languages

» L1 = {M: M halts on all inputs}
« L2 = {M;x : there is a y such that M(x)=y}
- L3 = {M;x : the computation M on input x uses

all states of M}
« L4 = {M;x;y: M(x)=Yy}



R ana RE Theorems




R and RE Theorems(1)

« If Lisin R, then so is =L

- Lisin R if and only if both L and -L are in RE
= Corollary: —H is not even in RE

» Lis in RE iff there is a TM M such that L. = E(M)
s L. is enumerated by M (dovetailing)



Revision of Language Classes

Context-free

? : We'll see in
logic chapters



Rice’s Theorem

It isn’t just HALTING the problem



Rice Theorem

» Suppose C is a proper, non-empty subset of the
set of all RE languages.

 Then the following problem is undecidable:
= Givena TM M, is L(M) in C

e In other words:

= Any non-trivial property of TMs represents an
undecidable problem

Proof



Fix Point in C

- main(){char q=34, n=10,*a="main()
{char q=34,n=10,*a=%c%s%c;
printf(a,q,a,q,n);}%c";printf(a,q,a,q,n);}



