Εισαγωγή στην Υπολογιστική Πολυπλοκότητα

Διδάσκοντες: **Ε. Ζάχος, Δ. Φωτάκης** Επιμέλεια διαφανειών: **Δ. Φωτάκης**

Σχολή Ηλεκτοολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστική Πολυπλοκότητα

- Γιατί κάποια προβλήματα είναι δύσκολο να λυθούν από υπολογιστές; Ανάπτυξη τελευταία 30 χρόνια (Papadimitriou, Computational Complexity, 1994).
- Ποια επιλύσιμα προβλήματα είναι εύκολα και ποια δύσκολα.
- Επιλύσιμα προβλήματα: Υπολογιστικοί πόροι;
 - Σύλογοι υπολογιστικοί πόροι ⇒ ευεπίλυτα (tractable) προβλήματα.
 Πολλαπλασιασμός Πινάκων, Κλασματικό Σακίδιο, Ελάχιστο Επικαλύπτον Δέντρο,
 Συντομότερα Μονοπάτια.
 - Διαφορετικά, δισεπίλυτα (intractable).
 Ακέραιο Σακίδιο, Περιοδεύων Πωλητής, Κάλυψη Συνόλων, Δρομολόγηση,
 Χρωματισμός, Συντομότερα Μονοπάτια με Περιορισμούς, κλπ.
 - Επίδραση υπολογιστικού μοντέλου στους υπολογιστικούς πόρους.

Θεωρία Υπολογισμού

- Γιατί κάποια προβλήματα είναι αδύνατο να λυθούν από υπολογιστές;
- Hilbert (1900): πληρότητα και αυτοματοποίηση των μαθηματικών.
- 10ο πρόβλημα : Αλγόριθμος για λύση Διοφαντικών εξισώσεων: Έχει $x^2 2y^2 + 3 = 0$ ακέραιες ρίζες;
- Αλγόριθμος: Διατύπωση και απόδειξη.
- Οχι αλγόριθμος: Ορισμός "αλγόριθμου" μέσω υπολογιστικού μοντέλου.
 Απόδειξη ότι "αλγόριθμος ⇒ αντίφαση στο μοντέλο".
- Gödel: Μαθηματικά δεν είναι πλήρη!
 Υπάρχουν "αλήθειες" που δεν αποδεικνύονται.
- Turing: Μαθηματικά δεν αυτοματοποιούνται!
 Μη-επιλύσιμα προβλήματα: επίλυσή τους δεν αυτοματοποιείται (γενική περίπτωση).
- Matijasevic (1970): Δεν υπάρχει αλγόριθμος για Διοφαντικές εξισώσεις!
 Για κάθε αλγόριθμο Α, υπάρχει εξίσωση που ο Α δίνει λάθος απάντηση!

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή - σελ. 2/17

Προβλήματα και Αλγόριθμοι

- Αλγόριθμος είναι λεπτομερής περιγραφή μεθόδου επίλυσης προβλήματος.
 υπολογιστική μηχανή (Turing) που τερματίζει.
- Υπολογιστικό πρόβλημα αποτελείται από άπειρο σύνολο στιγμιοτύπων.
 αποτελεί αντικείμενο μελέτης.
- Στιγμιότυπο είναι μαθηματικό αντικείμενο για το οποίο οπτάμε ερώτηση και περιμένουμε απάντηση.
- Δύο είδη προβλημάτων:
 - Απόφασης: απαντήσεις NAI ή OXI.
 - Βελτιστοποίησης: καλύτερη εφικτή λύση.

Αλγόριθμοι & Πολυπλοχότητα (Χειμώνας 2009) Εισαγωγή - σελ. 3/17 Αλγόριθμοι & Πολυπλοχότητα (Χειμώνας 2009)

Παραδείγματα Προβλημάτων

- Πρόβλημα Προσπελασιμότητας:
 - Στιγμιότυπο: Κατευθυνόμενο γράφημα G(V,E) και διακεκριμένες κορυφές s και t.
 - **Σρώτηση**: Υπάρχει μονοπάτι από s στο t;
- Πρόβλημα Συντομότερου Μονοπατιού:
 - Στιγμιότυπο: Κατευθυνόμενο γράφημα με μήκη στις ακμές G(V, E, w) και διακεκριμένες κορυφές s και t.
 - **m{ ilde{L}}** Ερώτηση: Ποιο είναι το συντομότερο s-t μονοπάτι;

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή - σελ. 5/17

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή — σελ. 6/17

Προσέγγιση

- Κλάσεις προβλημάτων (complexity classes) με παρόμοια "δυσκολία" (υπολογιστική πολυπλοκότητα).
- Αναγωγή σε πλήρη (complete) προβλήματα κάθε κλάσης:Συνοψίζουν δυσκολία της κλάσης.
- Πλήρες πρόβλημα "εύκολο" ⇒ Όλη η κλάση "εύκολη".
- Αρνητικά αποτελέσματα ⇒ Όλη η κλάση "δύσκολη".
- Ποοσδιορισμός υπολογιστικού έργου για λύση προβλημάτων στην κλάση (με παραδειγματικά υπολογιστικά προβλήματα)!
- Διαλεκτική σχέση αλγόριθμων και πολυπλοκότητας.

Παραδείγματα Προβλημάτων

- Πρόβλημα κύκλου Hamilton:

 - Ερώτηση: Υπάρχει κύκλος Hamilton στο G (κύκλος που διέρχεται από κάθε κορυφή ακριβώς μία φορά);
- Ποόβλημα Πεοιοδεύοντος Πωλητή:
 - Στιγμιότυπο: Σύνολο $=\{1,\ldots,n\}$ σημείων και αποστάσεις d(i,j) μεταξύ κάθε ζεύγους διαφορετικών σημείων.
 - **Σρώτηση**: Ποια μετάθεση π του N ελαχιστοποιεί

$$d(\pi(n), \pi(1)) + \sum_{i=1}^{n-1} d(\pi(i), \pi(i+1))$$

Κωδικοποίηση Προβλημάτων σε Τυπικές Γλώσσες

- $m{\square}$ Πρόβλημα βελτιστοποίησης ightarrow πρόβλημα απόφασης με φράγμα B.
 - Ελαχιστοποίηση: Υπάργει εφικτή λύση με κόστος < B;
 - Μεγιστοποίηση: Υπάρχει εφικτή λύση με κέρδος $\geq B$;
- Πρόβλημα απόφασης → τυπική γλώσσα με κωδικοποίηση.
 - Στιγμιότυπο → συμβολοσειρά σε αλφάβητο Σ.
 - Πρόβλημα \rightarrow γλώσσα, υποσύνολο του Σ^* .
- Πούβλημα Π και κωδικοποίηση e: Γλώσσα $\mathcal{L}(\Pi, e)$ αποτελείται από $x \in \Sigma^*$ που προκύπτουν από την e-κωδικοποίηση των NAI-στιγμιστύπων του Π .

$$\mathcal{L}(\Pi, e) = \{ e(x) \in \Sigma^* : x \in \Pi \}$$

Π.χ. πρόβληματα προσπελασιμότητας και κύκλου Hamilton.

Ντετερμινιστικές Μηχανές Turing

- **•** Ντερμινιστική Μηχανή Turing (DTM) $M = (Q, \Sigma, \delta, q_0, F)$:
 - Q σύνολο καταστάσεων.
 - Σ algábyto eisódou. $\Gamma = \Sigma \cup \{\sqcup\}$ algábyto taivías.
 - $q_0 \in Q$ αρχική κατάσταση.
 - $F \subseteq Q$ τελιχές καταστάσεις.
 - $m{\delta}:(Q\setminus F) imes\Gamma\mapsto Q imes\Gamma imes\{L,R,S\}$ συνάρτηση μετάβασης . (πατάσταση q, πεφαλή διαβάζει $\alpha)\to$ (q', πεφαλή γράφει $\alpha',$ πεφαλή μεταπινείται L,R, ή S)

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή - σελ. 9/17

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή — σελ. 10/17

Υπολογισιμότητα

- $m extbf{ extit{ extbf{ extit{ extit{\teit}}}}}}}}}}} \extit{\extit{\extit{\extit{\extit{\extit{\extit{$
- **Δ**ποφασίσιμη \mathcal{L} : $\forall x \in \mathcal{L}$, M(x) = NAI. $\forall x \notin \mathcal{L}$, M(x) = OXI.
- m Yπολογίσιμη $f\colon \forall x\in \Sigma^*,\, f(x)=y\Rightarrow M(x)=y.$ $f(x)\ {\rm dev}\ {\rm og}$ ίζεται $\Rightarrow M(x)\ {\rm dev}\ {\rm termatizel}.$
- ▲ξίωμα Church Turing: Υπολογίσιμο ⇔ Turing αποφασίσιμο / υπολογίσιμο!
- Να αποδείξετε τις ακόλουθες προτάσεις:
 - 1. Κάθε αποφασίσιμη γλώσσα είναι και ημιαποφασίσιμη.
 - 2. \mathcal{L} αποφασίσιμη \Rightarrow συμπλήρωμα $\overline{\mathcal{L}}$ αποφασίσιμο.
 - 3. \mathcal{L} αποφασίσιμη $\Leftrightarrow \mathcal{L}$ και $\overline{\mathcal{L}}$ ημιαποφασίσιμες.

Ντετερμινιστικές Μηχανές Turing

- Ντετερμινισμός: M(x) εξελίσσεται με προδιαγεγραμμένο τρόπο.
- Μ τερματίζει σε τελική κατάσταση: ΝΑΙ, ΟΧΙ, ΤΕΛΟΣ ή δεν τερματίζει.
 - M(x) = NAI, M αποδέχεται x.
 - M(x) = OXI, M anoqqíntel x.
 - $\qquad \qquad \mathcal{L}(M) = \left\{ x \in \Sigma^* : M(x) = \mathrm{NAI} \right\}.$
 - M(x) = TELOS hai éxodoς y, M upologize y = f(x).
- Καθολική Μηχανή Turing: U(M;x) = M(x). Προσομοιώνει τη λειτουργία της μηχανής M με είσοδο x.

Μη-Υπολογισιμότητα

- Μη-αποφασίσιμες γλώσσες (προβλήματα που δεν λύνονται)
 γιατί γλώσσες πάρα πολλές και μηχανές Turing πολλές.
- Πρόβλημα Τερματισμού: M(x) τερματίζει;
- Το πρόβλημα Τερματισμού είναι μη-αποφασίσιμο!
- m Aπόδειξη: DTM H τ.ω. H(M;x) αποφασίζει αν M(x) τερματίζει. H(M;x) = NAI αν M(x) τερματίζει. H(M;x) = OXI αν M(x) δεν τερματίζει.
- ullet Θεωρούμε DTM D(M):

if H(M; M) = NAI then run forever else halt

- m D(M) τεοματίζει ανν M(M) δεν τεοματίζει!
- D(D) τερματίζει **ανν** D(D) δεν τερματίζει! **Άτοπο!**
- Πολλά άλλα προβλήματα δεν λύνονται!!!

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009) Εισαγωγή - σελ. 11/17 Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Χρονική Πολυπλοκότητα

- **Σ** Χουική Πολυπλοκότητα $M \equiv \alpha$ ύξουσα $t: \mathbb{N} \mapsto \mathbb{N}: \forall x, |x| = n, M(x)$ τερματίζει $\leq t(n)$ βήματα.
- **Σ** Χονική Πολυπλοκότητα $\Pi \equiv \Pi$ ολυπλοκότητα γρηγορότερης M που λύνει Π .
- ightharpoonup DTIME $[t(n)] \equiv \{\Pi: \Pi$ λύνεται σε χρόνο $\mathrm{O}(t(n))\}$
- Ιεραρχία Κλάσεων Χρονικής Πολυπλοκότητας:
 - DTIME $[t(n)] \subset \mathbf{DTIME}[\omega(t(n)\log t(n))]$
 - **■ DTIME**[n] \subset **DTIME** $[n^2]$ \subset **DTIME** $[n^3]$ \subset \cdots
- ullet Πολυωνυμικός Χρόνος: $\mathbf{P} \equiv \cup_{k>0} \mathbf{DTIME}[n^k]$.
- Εχθετιχός Χρόνος: EXP $\equiv \cup_{k\geq 0}$ DTIME $[2^{n^k}]$.

 $P \subset EXP$

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή — σελ. 13/17

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

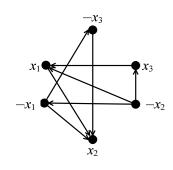
Εισαγωγή – σελ. 14/17

2-Ικανοποιησιμότητα $\in \mathbf{P}$

Φ Λογική πρόταση ϕ σε k-Συζευκτική Κανονική Μορφή (k-ΣΚΜ): $\phi = c_1 \wedge \ldots \wedge c_m, c_i = \ell_{i_1} \vee \ldots \vee \ell_{i_k}, \ell \in \{x_i, \neg x_i\}.$

Π.χ.
$$k = 2$$
: $(x_1 \lor x_2) \land (x_1 \lor \neg x_3) \land (\neg x_1 \lor x_2) \land (x_2 \lor x_3)$

- **•** k-Ικανοποιησιμότητα: ϕ σε k-ΣΚΜ ικανοποιήσιμη;
- m o Γράφημα G_ϕ με κορυφές $\{x_1,\ldots,x_n\}\cup\{\neg x_1,\ldots,\neg x_n\}.$ Όρος $\ell_i\vee\ell_j$: αχμές $(\neg\ell_i,\ell_j)$ και $(\neg\ell_j,\ell_i)$.
- G_{ϕ} συμμετοικό: $(x, x') \Leftrightarrow (\neg x', \neg x)$.
- $\ell_i \rightarrow \ell_j$ ψευδής $\Leftrightarrow \ell_i = 1$ και $\ell_j = 0$.
- $m{\phi}$ μη ικανοποιήσιμη ανν μονοπάτι $x-\neg x$ και μονοπάτι $\neg x-x$.

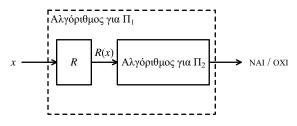


Ευεπίλυτα και Δυσεπίλυτα Ποοβλήματα

- Κλάση P: προβλήματα που λύνονται σε πολυωνυμικό χρόνο.
- Αξίωμα Cook Karp: P ταυτίζεται με ευεπίλυτα προβλήματα.
- 🗩 Υπέο:
 - Δεν εξαρτάται από υπολογιστικό μοντέλο!
 - Συνήθως μικοά πολυώνυμα (π.χ. $n, n^2, n^3, ...$).
 - Διπλασιασμός υπολογιστικής ισχύος \Rightarrow σημαντική αύξηση (π.χ. $2, \sqrt{2}, 2^{1/3}, \ldots$) μεγέθους στιγμιοτύπων.
- Κατά:
 - Ακραίες περιπτώσεις: Αλγόριθμος με χρόνο n^{100} δεν είναι πρακτικός ενώ αλγόριθμος με χρόνο $2^{n/100}$ είναι!
 - Γραμμικός Προγραμματισμός: Simplex εκθετικός στη θεωρία αλλά ταχύτερος στην πράξη!

Αναγωγή και Πληρότητα

- Π_1 ανάγεται πολυωνυμικά σε Π_2 : \exists πολυωνυμικά υπολογίσιμη συνάρτηση $R: \Sigma^* \mapsto \Sigma^*$, ώστε $\forall x \in \Sigma^*$, $x \in \Pi_1 \Leftrightarrow R(x) \in \Pi_2$ ($\Pi_1 \leq_P \Pi_2$). R ονομάζεται πολυωνυμική αναγωγή.
- $\Pi_1 \leq_P \Pi_2$ "δηλώνει" ότι το Π_2 είναι τουλ. τόσο δύσκολο όσο το Π_1 .
- \mathbf{C} κλάση προβλημάτων. Π είναι \mathbf{C} -δύσκολο αν $\forall \Pi' \in \mathbf{C}$ ανάγεται στο Π . Αν Π είναι \mathbf{C} -δύσκολο και $\Pi \in \mathbf{C} \Rightarrow \Pi$ είναι \mathbf{C} -πλήρες.
- Τα C-πλήρη προβλήματα "συνοψίζουν" τη δυσκολία της κλάσης C.
- ▶ Κλάση \mathbf{C} είναι κλειστή ως προς (πολυωνυμική) αναγωγή αν $\forall \Pi_1, \Pi_2, \Pi_1 \leq_P \Pi_2$ και $\Pi_2 \in \mathbf{C} \Rightarrow \Pi_1 \in \mathbf{C}$.



Κάποιες Παρατηρήσεις

- Πολυωνυμική αναγωγή είναι μεταβατική (σύνθεση αναγωγών).
- P κλειστό ως προς πολυωνυμική αναγωγή.
- $\Pi_1 \leq_P \Pi_2$ και $\Pi_2 \in \mathbf{P} (\mathbf{NP}) \Rightarrow \overline{\Pi}_1 \in \mathbf{P} (\mathbf{NP})$.
- (Κλειστές) κλάσεις με κοινό πλήρες πρόβλημα ταυτίζονται!
- Κλάσεις C, C' κλειστές ως προς αναγωγή. Αν έχουν κοινό πλήρες πρόβλημα, C = C'.

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2009)

Εισαγωγή — σελ. 17/17

