
Arithmetical Hierarchy

Vlachos Vagios

µΠλ∀

Algorithms and Complexity II

Arithmetical Hierarchy

Definitions
For k ≥ 0,

I Σ0
k is the class of languages

L = {x |∃x1∀x2 . . .QkxkR (x1, . . . ,xk ,x)}

where R is recursive relation, and

Qk =

{
∃, if k is odd
∀, if k is even

and also xi , ∀i ∈ {1, . . . ,k} are tuples of natural numbers.
I Π0

k = coΣ0
k

I ∆0
k = Σ0

k ∩Π0
k

Arithmetical Hierarchy

Definitions
For k ≥ 0,

I Σ0
k is the class of languages

L = {x |∃x1∀x2 . . .QkxkR (x1, . . . ,xk ,x)}

where R is recursive relation, and

Qk =

{
∃, if k is odd
∀, if k is even

and also xi , ∀i ∈ {1, . . . ,k} are tuples of natural numbers.
I Π0

k = coΣ0
k

I ∆0
k = Σ0

k ∩Π0
k

Arithmetical Hierarchy

Definitions
For k ≥ 0,

I Σ0
k is the class of languages

L = {x |∃x1∀x2 . . .QkxkR (x1, . . . ,xk ,x)}

where R is recursive relation, and

Qk =

{
∃, if k is odd
∀, if k is even

and also xi , ∀i ∈ {1, . . . ,k} are tuples of natural numbers.
I Π0

k = coΣ0
k

I ∆0
k = Σ0

k ∩Π0
k

More definitions...

I L ∈ Σ0
k ⇒ L̄ = {x |¬(∃x1∀x2 . . .QkxkR (x1,x2, . . . ,xk ,x))}⇒

L̄
{
x |∀x1∃x2 . . .Q ′kxk¬R (x1,x2, . . . ,xk ,x)

}
I L1 ∈ Σ0

0⇒ L1 = {x |R (x)}⇒ Σ0
0 = R

I L̄1 ∈ Π0
0⇒ L̄1 = {x |¬R (x)}⇒ Π0

0 = R

I Prenex normal form
I Tarski - Kuratowski algorithm
I praenexus "tied or bound up in front", past participle of

praenectere

More definitions...

I L ∈ Σ0
k ⇒ L̄ = {x |¬(∃x1∀x2 . . .QkxkR (x1,x2, . . . ,xk ,x))}⇒

L̄
{
x |∀x1∃x2 . . .Q ′kxk¬R (x1,x2, . . . ,xk ,x)

}
I L1 ∈ Σ0

0⇒ L1 = {x |R (x)}⇒ Σ0
0 = R

I L̄1 ∈ Π0
0⇒ L̄1 = {x |¬R (x)}⇒ Π0

0 = R

I Prenex normal form
I Tarski - Kuratowski algorithm
I praenexus "tied or bound up in front", past participle of

praenectere

More definitions...

I L ∈ Σ0
k ⇒ L̄ = {x |¬(∃x1∀x2 . . .QkxkR (x1,x2, . . . ,xk ,x))}⇒

L̄
{
x |∀x1∃x2 . . .Q ′kxk¬R (x1,x2, . . . ,xk ,x)

}
I L1 ∈ Σ0

0⇒ L1 = {x |R (x)}⇒ Σ0
0 = R

I L̄1 ∈ Π0
0⇒ L̄1 = {x |¬R (x)}⇒ Π0

0 = R

I Prenex normal form
I Tarski - Kuratowski algorithm
I praenexus "tied or bound up in front", past participle of

praenectere

More definitions...

I L ∈ Σ0
k ⇒ L̄ = {x |¬(∃x1∀x2 . . .QkxkR (x1,x2, . . . ,xk ,x))}⇒

L̄
{
x |∀x1∃x2 . . .Q ′kxk¬R (x1,x2, . . . ,xk ,x)

}
I L1 ∈ Σ0

0⇒ L1 = {x |R (x)}⇒ Σ0
0 = R

I L̄1 ∈ Π0
0⇒ L̄1 = {x |¬R (x)}⇒ Π0

0 = R

I Prenex normal form
I Tarski - Kuratowski algorithm
I praenexus "tied or bound up in front", past participle of

praenectere

A proof for Σ0
1 = RE

L ∈ Σ0
1⇒ L = {x |∃yR (y ,x)}

Σ0
1 ⊆ RE

I MR TM which decides R
I We construct ML as below

I on input 〈x〉
I run MR for 〈y = ε,x〉 if it accepts ML accepts, else
I run MR for the lexicographicaly next y

RE⊆ Σ0
1

Theorem
Let L ∈ RE, then

n ∈ L ⇐⇒ (∃(m1,m2, . . . ,mk)(P (m1,m2, . . . ,mk ,n) = 0))

for some k and for P some Diophantine equation.

A proof for Σ0
1 = RE

L ∈ Σ0
1⇒ L = {x |∃yR (y ,x)}

Σ0
1 ⊆ RE

I MR TM which decides R
I We construct ML as below

I on input 〈x〉
I run MR for 〈y = ε,x〉 if it accepts ML accepts, else
I run MR for the lexicographicaly next y

RE⊆ Σ0
1

Theorem
Let L ∈ RE, then

n ∈ L ⇐⇒ (∃(m1,m2, . . . ,mk)(P (m1,m2, . . . ,mk ,n) = 0))

for some k and for P some Diophantine equation.

A first step to show the hierarchy

Theorem
For all i , Σ0

i+1 ⊇ Σ0
i ,Π

0
i

Proof.
Use “dummy” quantifiers.

Figure: The Arithmetical
Hierarchy

<2->In right column.

Upper bounds in AH and some known problems

I Showing upper bounds is generally an easy task

I HALT ≡ H = {〈M,x〉 |M (x) ↓}= {〈M,x〉 |∃t M (x) ↓t}
I HALT ∈ Σ0

1 = RE
I we already know that HALT /∈ R

I K = {〈M〉 |M (M) ↓}= {〈M〉 |∃tM (M) ↓t} ∈ Σ0
1

I K = {x |ϕx (x) ↓}= {x |∃t ϕx (x) ↓t}

Upper bounds in AH and some known problems

I Showing upper bounds is generally an easy task

I HALT ≡ H = {〈M,x〉 |M (x) ↓}= {〈M,x〉 |∃t M (x) ↓t}
I HALT ∈ Σ0

1 = RE
I we already know that HALT /∈ R

I K = {〈M〉 |M (M) ↓}= {〈M〉 |∃tM (M) ↓t} ∈ Σ0
1

I K = {x |ϕx (x) ↓}= {x |∃t ϕx (x) ↓t}

Upper bounds in AH and some known problems

I Showing upper bounds is generally an easy task

I HALT ≡ H = {〈M,x〉 |M (x) ↓}= {〈M,x〉 |∃t M (x) ↓t}
I HALT ∈ Σ0

1 = RE
I we already know that HALT /∈ R

I K = {〈M〉 |M (M) ↓}= {〈M〉 |∃tM (M) ↓t} ∈ Σ0
1

I K = {x |ϕx (x) ↓}= {x |∃t ϕx (x) ↓t}

The power from below

Fact
We can enumerate languages in RE = Σ0

1 using a TM

Question. Can we enumerate/decide languages of higher
hierarchy?

Question. How much “stronger” we have to make a TM to be
able to enumerate/decide a language in Σ0

n?

Question. How can we make a TM “stronger”?
Answer. We will give to TMs the power to decide difficult

problems (Oracles)

The power from below

Fact
We can enumerate languages in RE = Σ0

1 using a TM

Question. Can we enumerate/decide languages of higher
hierarchy?

Question. How much “stronger” we have to make a TM to be
able to enumerate/decide a language in Σ0

n?

Question. How can we make a TM “stronger”?
Answer. We will give to TMs the power to decide difficult

problems (Oracles)

The power from below

Fact
We can enumerate languages in RE = Σ0

1 using a TM

Question. Can we enumerate/decide languages of higher
hierarchy?

Question. How much “stronger” we have to make a TM to be
able to enumerate/decide a language in Σ0

n?

Question. How can we make a TM “stronger”?
Answer. We will give to TMs the power to decide difficult

problems (Oracles)

Oracles and the AH

Let L ∈ Σ0
2. Then L = {x |∃y∀zR (y ,z ,x)} where R is a recursive

predicate.
I We construct first the TM M,

1. M gets an input 〈y ,x〉
2. then by dovetailing check for all z if R (y ,z ,x) = 1. If at any

step R = 0 M rejects.

I We construct now the TM ML,

1. ML gets an input 〈x〉
2. lexicographicaly gets a y and put as input in M 〈y ,x〉
3. then M ′ goes into the special state, if the next state is q”yes”

then we go to (2) and try the next y , if the next state is q”no”

then then M ′ accepts.

Oracles and the AH

Let L ∈ Σ0
2. Then L = {x |∃y∀zR (y ,z ,x)} where R is a recursive

predicate.
I We construct first the TM M,

1. M gets an input 〈y ,x〉
2. then by dovetailing check for all z if R (y ,z ,x) = 1. If at any

step R = 0 M rejects.

I We construct now the TM ML,

1. ML gets an input 〈x〉
2. lexicographicaly gets a y and put as input in M 〈y ,x〉
3. then M ′ goes into the special state, if the next state is q”yes”

then we go to (2) and try the next y , if the next state is q”no”

then then M ′ accepts.

Oracles and the AH

Theorem
The languages in Σ0

2 can be enumerated by a TMH where H is an
oracle for the Halting problem.

Can we do something similar to this with languages in
Σ0

n for n > 2?

Yes, we can.

Oracles and the AH

Theorem
The languages in Σ0

2 can be enumerated by a TMH where H is an
oracle for the Halting problem.

Can we do something similar to this with languages in
Σ0

n for n > 2?

Yes, we can.

Oracles and the AH

Theorem
The languages in Σ0

2 can be enumerated by a TMH where H is an
oracle for the Halting problem.

Can we do something similar to this with languages in
Σ0

n for n > 2?

Yes, we can.

Let’s Jump

Definition
Let A a language. Then we define A′ = KA =

{
x |ϕA

x (x) ↓
}
. A′ is

called jump of A, and A(n) is the nth jump of A.

I /0′ := K = {x |ϕx (x) ↓}.

Theorem
/0(n) is ≤m-complete for Σ0

n, for n ≥ 1.

Proof.
By induction.

Let’s Jump

Definition
Let A a language. Then we define A′ = KA =

{
x |ϕA

x (x) ↓
}
. A′ is

called jump of A, and A(n) is the nth jump of A.

I /0′ := K = {x |ϕx (x) ↓}.

Theorem
/0(n) is ≤m-complete for Σ0

n, for n ≥ 1.

Proof.
By induction.

We Jumping...

/0′ = K is complete in Σ0
1 = RE. By induction it suffices to show

that KA is Σ0
n+1-complete when A is Σ0

n-complete.

KA =
{
x |ϕA

x (x)
}

=
{
x |(∃t)ϕ

A
x (x) ↓t

}
KA ∈ Σ0

n+1. Need to show that KA is Σ0
n+1-hard when A is

Σ0
n-hard.

I Let B ∈ Σ0
n+1, B = {x |∃y 〈x ,y〉 ∈ C} where C ∈ Π0

n.

I A is Σ0
n-hard so Ā is Π0

n-hard

I exists mapping σ (〈x ,y〉) ∈ Ā ⇐⇒ 〈x ,y〉 ∈ C

We Jumping...

/0′ = K is complete in Σ0
1 = RE. By induction it suffices to show

that KA is Σ0
n+1-complete when A is Σ0

n-complete.

KA =
{
x |ϕA

x (x)
}

=
{
x |(∃t)ϕ

A
x (x) ↓t

}
KA ∈ Σ0

n+1. Need to show that KA is Σ0
n+1-hard when A is

Σ0
n-hard.

I Let B ∈ Σ0
n+1, B = {x |∃y 〈x ,y〉 ∈ C} where C ∈ Π0

n.

I A is Σ0
n-hard so Ā is Π0

n-hard

I exists mapping σ (〈x ,y〉) ∈ Ā ⇐⇒ 〈x ,y〉 ∈ C

We Jumping...

/0′ = K is complete in Σ0
1 = RE. By induction it suffices to show

that KA is Σ0
n+1-complete when A is Σ0

n-complete.

KA =
{
x |ϕA

x (x)
}

=
{
x |(∃t)ϕ

A
x (x) ↓t

}
KA ∈ Σ0

n+1. Need to show that KA is Σ0
n+1-hard when A is

Σ0
n-hard.

I Let B ∈ Σ0
n+1, B = {x |∃y 〈x ,y〉 ∈ C} where C ∈ Π0

n.

I A is Σ0
n-hard so Ā is Π0

n-hard

I exists mapping σ (〈x ,y〉) ∈ Ā ⇐⇒ 〈x ,y〉 ∈ C

We Jumping...

/0′ = K is complete in Σ0
1 = RE. By induction it suffices to show

that KA is Σ0
n+1-complete when A is Σ0

n-complete.

KA =
{
x |ϕA

x (x)
}

=
{
x |(∃t)ϕ

A
x (x) ↓t

}
KA ∈ Σ0

n+1. Need to show that KA is Σ0
n+1-hard when A is

Σ0
n-hard.

I Let B ∈ Σ0
n+1, B = {x |∃y 〈x ,y〉 ∈ C} where C ∈ Π0

n.

I A is Σ0
n-hard so Ā is Π0

n-hard

I exists mapping σ (〈x ,y〉) ∈ Ā ⇐⇒ 〈x ,y〉 ∈ C

Still Jumping...

I Now we define a mapping τ that is on x , τ (x) is the index of a
TM MA which on any input,

I enumerates y = 0,1,2, . . .
I compute σ (〈x ,y〉)
I ask oracle if σ (〈x ,y〉) /∈ A and if it says yes then MA halt.

x ∈ B ⇐⇒ ∃x 〈x ,y〉 ∈ C
⇐⇒ ∃y σ (〈x ,y〉) /∈ A

⇐⇒ ϕ
A
τ(x) (τ (x)) ↓

⇐⇒ τ (x) ∈ KA

So τ consists a reduction from B to KA, and KA is Σ0
n+1-hard.

Still Jumping...

I Now we define a mapping τ that is on x , τ (x) is the index of a
TM MA which on any input,

I enumerates y = 0,1,2, . . .
I compute σ (〈x ,y〉)
I ask oracle if σ (〈x ,y〉) /∈ A and if it says yes then MA halt.

x ∈ B ⇐⇒ ∃x 〈x ,y〉 ∈ C
⇐⇒ ∃y σ (〈x ,y〉) /∈ A

⇐⇒ ϕ
A
τ(x) (τ (x)) ↓

⇐⇒ τ (x) ∈ KA

So τ consists a reduction from B to KA, and KA is Σ0
n+1-hard.

Still Jumping...

I Now we define a mapping τ that is on x , τ (x) is the index of a
TM MA which on any input,

I enumerates y = 0,1,2, . . .
I compute σ (〈x ,y〉)
I ask oracle if σ (〈x ,y〉) /∈ A and if it says yes then MA halt.

x ∈ B ⇐⇒ ∃x 〈x ,y〉 ∈ C
⇐⇒ ∃y σ (〈x ,y〉) /∈ A

⇐⇒ ϕ
A
τ(x) (τ (x)) ↓

⇐⇒ τ (x) ∈ KA

So τ consists a reduction from B to KA, and KA is Σ0
n+1-hard.

A part of Jump’s Theorem

Theorem
If A is ≤m-complete for Σ0

n, then A′ /∈ Σ0
n.

Proof.
Suppose A′ = KA ∈ Σ0

n. Because A is ≤m-complete for Σ0
n there is

mapping σ s.t.
x ∈ KA ⇐⇒ σ (x) ∈ A

Let MA be TM with an oracle for A that halts on y iff σ (y) ∈ A

σ

(〈
MA
〉)
∈ A ⇐⇒

〈
MA
〉
∈ KA

⇐⇒ MA
(〈

MA
〉)
↓

⇐⇒ σ

(〈
MA
〉)

/∈ A

A part of Jump’s Theorem

Theorem
If A is ≤m-complete for Σ0

n, then A′ /∈ Σ0
n.

Proof.
Suppose A′ = KA ∈ Σ0

n. Because A is ≤m-complete for Σ0
n there is

mapping σ s.t.
x ∈ KA ⇐⇒ σ (x) ∈ A

Let MA be TM with an oracle for A that halts on y iff σ (y) ∈ A

σ

(〈
MA
〉)
∈ A ⇐⇒

〈
MA
〉
∈ KA

⇐⇒ MA
(〈

MA
〉)
↓

⇐⇒ σ

(〈
MA
〉)

/∈ A

A part of Jump’s Theorem

Theorem
If A is ≤m-complete for Σ0

n, then A′ /∈ Σ0
n.

Proof.
Suppose A′ = KA ∈ Σ0

n. Because A is ≤m-complete for Σ0
n there is

mapping σ s.t.
x ∈ KA ⇐⇒ σ (x) ∈ A

Let MA be TM with an oracle for A that halts on y iff σ (y) ∈ A

σ

(〈
MA
〉)
∈ A ⇐⇒

〈
MA
〉
∈ KA

⇐⇒ MA
(〈

MA
〉)
↓

⇐⇒ σ

(〈
MA
〉)

/∈ A

Theorem of Arithmetical Hierarchy

Theorem
Arithmetical Hierachy does not collapse.

Proof.
/0(n) ∈ Σ0

n\Π0
n and ¯/0(n) ∈ Π0

n\Σ0
n. Then

(∀n > 0)
[
∆0

n ⊂ Σ0
n &∆0

n ⊂ Π0
n
]

Theorem of Arithmetical Hierarchy

Theorem
Arithmetical Hierachy does not collapse.

Proof.
/0(n) ∈ Σ0

n\Π0
n and ¯/0(n) ∈ Π0

n\Σ0
n. Then

(∀n > 0)
[
∆0

n ⊂ Σ0
n &∆0

n ⊂ Π0
n
]

Post’s Theorem

Theorem
For n ≥ 0,
1. B ∈ Σ0

n+1 ⇐⇒ B is r.e. in some Π0
n set ⇐⇒ B is r.e in some

Σ0
n set

2. /0(n) is Σ0
n-complete for n > 0

3. B ∈ Σ0
n+1 ⇐⇒ is r.e. in /0(n)

4. B ∈∆0
n+1 ⇐⇒ B ≤T /0(n) ⇐⇒ is decided in /0(n)

I A language in Σ0
n+1 can be enumerated by a TMA where

A ∈ Σ0
n

I A language in ∆0
n+1 can be decided by a TMA where A ∈ Σ0

n

Post’s Theorem

Theorem
For n ≥ 0,
1. B ∈ Σ0

n+1 ⇐⇒ B is r.e. in some Π0
n set ⇐⇒ B is r.e in some

Σ0
n set

2. /0(n) is Σ0
n-complete for n > 0

3. B ∈ Σ0
n+1 ⇐⇒ is r.e. in /0(n)

4. B ∈∆0
n+1 ⇐⇒ B ≤T /0(n) ⇐⇒ is decided in /0(n)

I A language in Σ0
n+1 can be enumerated by a TMA where

A ∈ Σ0
n

I A language in ∆0
n+1 can be decided by a TMA where A ∈ Σ0

n

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

TOTAL = {〈M〉 |L(M) = Σ∗}= {〈M〉 |ϕM is total}
I TOTAL = {〈M〉 |(∀x ∈ Σ∗)(∃t ∈ N)M (x) ↓t} ∈ Π0

2

I Let A ∈ Π2

I x ∈ A ⇐⇒ (∀y)(∃z)R (y ,z ,x)

I exists f (x) s.t. ϕf (x) (u) =

{
0, if (∀y ≤ u)(∃z)R (y ,z ,x)

↑, otherwise

I x ∈ A⇒ f (x) total

I also if x ∈ Ā⇒ Lf (x) finite (!) ⇒ f (x) finite

Lower bounds in AH

INF = {〈M〉 |L(M) is infinite }
I INF =
{〈M〉 |(∀n ∈ N)(∃t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) ↓t} ∈ Π0

2

I A is Σ0
n-complete iff Ā is Π0

n-complete
I ¯INF = FIN =
{〈M〉 |(∃n ∈ N)(∀t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) 6↓t} ∈ Σ0

2.

I In previous slide we showed that FIN is Σ0
2-complete

Lower bounds in AH

INF = {〈M〉 |L(M) is infinite }
I INF =
{〈M〉 |(∀n ∈ N)(∃t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) ↓t} ∈ Π0

2

I A is Σ0
n-complete iff Ā is Π0

n-complete
I ¯INF = FIN =
{〈M〉 |(∃n ∈ N)(∀t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) 6↓t} ∈ Σ0

2.

I In previous slide we showed that FIN is Σ0
2-complete

Lower bounds in AH

INF = {〈M〉 |L(M) is infinite }
I INF =
{〈M〉 |(∀n ∈ N)(∃t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) ↓t} ∈ Π0

2

I A is Σ0
n-complete iff Ā is Π0

n-complete
I ¯INF = FIN =
{〈M〉 |(∃n ∈ N)(∀t ∈ N,x ∈ Σ∗) |〈x〉|> n⇒M (x) 6↓t} ∈ Σ0

2.

I In previous slide we showed that FIN is Σ0
2-complete

More Problems

I The Riemann Hypothesis
is in Π0

1

I The Twin Prime
Conjecture is in Π0

2

I P 6= NP is in Π0
2

Figure: The Arithmetical
Hierarchy

<2->In right column.

References

Robert Irving Soare
Recursively Enumerable Sets and Degrees: A Study of
Computable Functions and Computably Generated Sets
Spinger, 1987.

Dexter C. Kozen
Theory of Computation, Texts in Computer Science
Spinger, 2006.

Yiannis N. Moschovakis
Αναδρομή και Υπολογισvιμότητα

2008

