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Arithmetical Hierarchy

Definitions
For kK >0,
> 22 is the class of languages

L={x|3x1Vxa... QxR (x1,...,Xk,Xx)}

where R is recursive relation, and

Q= {3, if k is odd

V, if k is even

and also x;, Vi € {1,...,k} are tuples of natural numbers.
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More definitions...

v

Le Y0 = L= {x|-(FaVxa... Quxx R (x1,%2, ..., Xk, X))} =
L{x|Vx13xz ... Qxk =R (x1,%2, ..., Xk, x) }

v

Lexd=L;={x|R(x)}=2y=R

v

L1end= L1 ={x|-R(x)}=NJ=R

Prenex normal form

v

» Tarski - Kuratowski algorithm
» praenexus "tied or bound up in front", past participle of
praenectere



A proof for ¥9 = RE
Le¥)= L= {x3yR(y,x)}
Y9 CRE

» Mg TM which decides R
» We construct M, as below

» on input (x)
» run Mg for (y = €,x) if it accepts M, accepts, else
» run Mg for the lexicographicaly next y



A proof for ¥9 = RE
Le¥ = L={x]3yR(y,x)}
Y9 CRE
» Mgr TM which decides R
» We construct M, as below

» on input (x)
» run Mg for (y = €,x) if it accepts M, accepts, else
» run Mg for the lexicographicaly next y

RE C Y9

Theorem
Let L € RE, then

nel < (I(my,ma,....,mg)(P(myi,ma,...,my,n)=0))

for some k and for P some Diophantine equation.



A first step to show the hierarchy

Theorem
H 0 0 Mo
Forall i, i , 2 %7, T;
|'|" z
Proof. A
Use “dummy” quantifiers. [ ."
[}
[ ]
n, z,
A?
n1 21
A1

Figure: The Arithmetical
Hierarchy
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Upper bounds in AH and some known problems

» Showing upper bounds is generally an easy task

> HALT = H = {{M,x)[M(x) 1} = {(M,x) [3¢ M (x) 4}
» HALT € Y9 =RE
» we already know that HALT ¢ R

> K = {(M)[M(M) |} = {(M)[3tM(M) 17} € 50
» K= {x]g«(x) 1} = {x[3t o« (x) |}
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The power from below

Fact
We can enumerate languages in RE = X9 using a TM

Question. Can we enumerate/decide languages of higher
hierarchy?

Question. How much “stronger” we have to make a TM to be
able to enumerate/decide a language in X927
Question. How can we make a TM “stronger?

Answer. We will give to TMs the power to decide difficult
problems (Oracles)



Oracles and the AH

Let L€ ¥9. Then L= {x|3yVzR(y,z,x)} where R is a recursive
predicate.

» We construct first the TM M,

1. M gets an input (y,x)
2. then by dovetailing check for all z if R(y,z,x) =1. If at any
step R =0 M rejects.



Oracles and the AH

Let L€ ¥9. Then L= {x|3yVzR(y,z,x)} where R is a recursive
predicate.
» We construct first the TM M,

1. M gets an input (y,x)
2. then by dovetailing check for all z if R(y,z,x) =1. If at any
step R =0 M rejects.

» We construct now the TM M|,

1. M. gets an input (x)

2. lexicographicaly gets a y and put as input in M (y,x)

3. then M’ goes into the special state, if the next state is ¢ yes
then we go to (2) and try the next y, if the next state is g o
then then M’ accepts.
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Theorem
The languages in X3 can be enumerated by a TMH where H is an
oracle for the Halting problem.
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Oracles and the AH

Theorem
The languages in X3 can be enumerated by a TMH where H is an
oracle for the Halting problem.

Can we do something similar to this with languages in
Y0 forn>27

Yes, we can.
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Let's Jump

Definition
Let A a language. Then we define A'= KA = {x|of (x) |}. A'is
called jump of A, and A(" is the nth jump of A.

- 0= K = {x|g (x) ).

Theorem
0 js <m-complete for ¥, for n> 1.

Proof.
By induction.



We Jumping...

0’ = K is complete in ¥ = RE. By induction it suffices to show
that K4 is £%, ;-complete when A is £9-complete.

KA = {xlof (x)} = {x1(36) £ (x) 4*

Need to show that KA is X0

A 0
Ktex n+1

n+1-
¥ 9-hard.

-hard when A is
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We Jumping...

0’ = K is complete in ¥ = RE. By induction it suffices to show
that K4 is £%, ;-complete when A is £9-complete.

KA = {xlof (x)} = {x1(36) £ (x) 4*

Need to show that KA is X0

A 0
Ktex n+1

n+1-
¥ 9-hard.

» Let BeX? ,, B={x[Ty (x,y) € C} where C € NY.

-hard when A is

» Ais ¥%-hard so A is M%hard

» exists mapping o ((x,y)) € A < (x,y) € C



Still Jumping...

» Now we define a mapping 7 that is on x, 7(x) is the index of a
TM MA which on any input,

» enumerates y =0,1,2,...
» compute o ({x,y))
» ask oracle if 6 ({x,y)) ¢ A and if it says yes then M* halt.
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Still Jumping...

» Now we define a mapping 7 that is on x, 7(x) is the index of a
TM MA which on any input,

» enumerates y =0,1,2,...
» compute o ({x,y))
» ask oracle if 6 ({x,y)) ¢ A and if it says yes then M* halt.

x€B << Ix(x,y)ye C
— Jyo((xy) ¢A

= i (T(x)
— 1(x) e KA

So 7 consists a reduction from B to K”, and K” is £%, ;-hard.



A part of Jump's Theorem

Theorem
If A is <,-complete for ¥9, then A’ ¢ ¥9.

Proof.
Suppose A’ = KA € 9. Because A is <,,-complete for 0 there is
mapping O s.t.

xeKA < o(x)c A
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A part of Jump's Theorem
Theorem
If A is <,-complete for ¥9, then A’ ¢ ¥9.

Proof.
Suppose A’ = KA € 9. Because A is <,,-complete for 0 there is
mapping O s.t.

xeKA < o(x)c A

Let MA be TM with an oracle for A that halts on y iff 6 (y) € A
c <<I\/IA>> CA = <MA> € KA

()
= o{(w)) e

O



Theorem of Arithmetical Hierarchy

Theorem
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Theorem of Arithmetical Hierarchy

Theorem
Arithmetical Hierachy does not collapse.

Proof. _
0" € ¥0\N9 and 0(M € N\ 9. Then

(Vn>0)[A% c 9& A% c MY



Post's Theorem

Theorem
For n> 0,

1. BEXY | <= Bisr.e insome NS set <= B is r.e in some
Y0 set

2. 0" js ¥9-complete for n >0

3. Bexl,, < isre. in (")

4. BeEAY . «— B<70M — s decided in ("
n+1



Post's Theorem

Theorem
For n> 0,

1. BEXY | <= Bisr.e insome NS set <= B is r.e in some
Y0 set

2. 0" js ¥9-complete for n >0

3. Bexl,, < isre. in (")

4. BeAY, , < B<r 0(") < s decided in 0"

» A language in ZQH can be enumerated by a TMA where
Acy?
> A language in A2, can be decided by a TM* where A€ ¥9
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Lower bounds in AH

TOTAL = {{M)|L(M)=X*} = {{M)|pp is total}
» TOTAL={(M)|(Vx € Z*) (3t e N)M(x) |t} € M
» Let Ac
» x€A <= (Vy)(3z)R(y,z,x)

0, if (Vy<u)(32)R(y,z,x)
T,  otherwise

> exists f(x) s.t. @p( (u) = {

» x € A= f(x) total

> also if x € A= Ly finite () = f(x) finite
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Lower bounds in AH

INF = {(M)|L(M) is infinite }
» INF =
{(M)|(VneN)(Ft € N,x € %) |(x)| > n= M(x) }t} € NS

> Ais Y9-complete iff A is M%-complete
> INF = FIN =
{(M)|(Bn e N)(Vt e N,x € ) [(x)| > n= M (x) J£} € £9.

» In previous slide we showed that FIN is £3-complete



More Problems

» The Riemann Hypothesis
is in M9

» The Twin Prime
. . . z,
Conjecture is in M3 :
4,
» P NP is in MY .
L]
L]
™ e
nz\\ e /z
"
// o \\\
/’/’
n, ) // X,K
///’/ A -

Figure: The Arithmetical
Hierarchy
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