Turing Machines and The Chomsky Hierarchy

November 24, 2011

Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
» N : set of non-terminal symbols
» S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules

v

Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
» N : set of non-terminal symbols
» S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules

» Relation =C (XU N)" x (XU N)*

v

Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
N : set of non-terminal symbols
S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules
» Relation =C (XU N)" x (XU N)*
» Relation —* C (X U N)* x (XU N)" is the reflexive-transitive
closure of —

vV vy

Languages generated by grammars

Lemma
The class of languages generated by grammars is the class of
recursively enumerable languages

Languages generated by grammars

Lemma
The class of languages generated by grammars is the class of

recursively enumerable languages

» We can enumerate all possible derivations of strings from S
1. L:=1]5]
2. Pop out the first element of L (call it x)
3. if x € ¥* then print x
else for each derivation rule applicable on x add the result of
the application of the rule as the last element of L
4. if L#[] go to step 2

Languages generated by grammars

» Grammar derivations can be used to simulate the moves of a
Turing Machine, where the string being manipulated
represents the Turing Machine's configuration

» we define non-terminal symbols R, L

» For all ((g,0),(¢’,0’,—)) € § we create the derivations
So,q,0; — Ro'o}, q, for all o;

» For all ((g,0),(q’,0’,<)) € § we create the derivation
So,q,— L, q', 0’

» Forall ((g,0),(¢’,0’,—)) € § we create the derivation
So,q— So',q

» We create the derivations o;L — So; for all o;

» We create the derivations Ro; — ;S for all o;

» For all ((g,0), (yes,o’, m)) we create the derivation
So,q,— o’

x € L(G)?

Lemma
Given grammar G and x € ¥* it is undecideable whether x € L(G)

x € L(G)?

Lemma
Given grammar G and x € ¥* it is undecideable whether x € L(G)

» The Halting Problem (HP) is recursively enumerable so there
is a grammar G so that L(G) = HP

x € L(G)?

Lemma
Given grammar G and x € ¥* it is undecideable whether x € L(G)

» The Halting Problem (HP) is recursively enumerable so there
is a grammar G so that L(G) = HP

» We could construct a non-deterministic Turing Machine M
that simulates the rule applications of G ...

Context-sensitive Grammars

Definition
A context-sensitive grammar is a grammar for which whenever
(x,y) € R we have |x| < |y]

Context-sensitive Grammars

Definition
A context-sensitive grammar is a grammar for which whenever
(x,y) € R we have |x| < |y]

Example

There is a context-sensitive grammar that generates the language
L={xx:xeX*}

S — a;a;
S — aiA;
S— a,-Sa,-
S — a;SA;
Aiaj — ajA;

Aje — aje

where a;,a; € X and A; € N\ {S}

x € L(G)?

Lemma
Given grammar G and x € L* it is decideable whether x € L(G)

x € L(G)?

Lemma
Given grammar G and x € L* it is decideable whether x € L(G)

There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem

x € L(G)?

Lemma
Given grammar G and x € L* it is decideable whether x € L(G)

There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem

1. w:=S§, Store :== ()
2. Choose y ¢ Store such that w—'y
if |x| < |y| then halt with “no”
else if y = x then halt with “yes”
else Store := Store U{w}, w := y, repeat

x € L(G)?

Lemma
Given grammar G and x € L* it is decideable whether x € L(G)

There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem
1. w:=S§, Store :== ()
2. Choose y ¢ Store such that w—'y
if |x| < |y| then halt with “no”
else if y = x then halt with “yes”
else Store := Store U{w}, w := y, repeat

x|

Due to the restriction (x,y) = |x| < |y| we need at most Y_|Z|’
i=0
steps to surpass the length of x

Languages generated by context-sensitive grammars

Lemma
The class of languages generated by context-sensitive grammars is
precisely NSPACE (n)

Languages generated by context-sensitive grammars

Lemma
The class of languages generated by context-sensitive grammars is
precisely NSPACE (n)

» There is a non-deterministic algorithm that decides L (G) with
additional space n

1. Choose x1,x, ..., Xk so that
S—x — x— -+ — x, and
[xi| < [x]

2. if xx = x then halt with “yes" else halt with “no”

Languages generated by context-sensitive grammars

Lemma
The class of languages generated by context-sensitive grammars is

precisely NSPACE (n)

» There is a non-deterministic algorithm that decides L (G) with
additional space n

1. Choose x1,x, ..., Xk so that
S—x1 —xp— -+ — x, and
[xi| < Ix]

2. if xx = x then halt with "yes" else halt with “no”

» |f a non-deterministic Turing Machine using additional space n
decides L then there is a context-sensitive G such that
L=L(G)

» The string representation of the machine's configuration has
length n+ 3 at most

» We can use U (blank) as a terminal symbol of G

» We can design the grammar rules so that the string being
manipulated has always length n + 3 (padding with Li)

» But this is a context-sensitive grammar. . .

Context-free Grammars

Definition
A grammar is context-free if, for all rules (x,y) € R, x € N

Context-free Grammars

Definition
A grammar is context-free if, for all rules (x,y) € R, x € N

Example
There is a context-free grammar that generates the language of
balanced parentheses

S—SS
S—(S)
S—=0)

S—e¢

x € L(G)?

Lemma
Given grammar G and x € L* it is in P to decide whether
x € L(G).

x € L(G)?

Lemma
Given grammar G and x € L* it is in P to decide whether

x € L(G).

Papadimitriou gives a dynamic-programming algorithm which
solves this problem in polynomial time

Right-linear Context-free Grammars

Definition
A context-free grammar is right-linear if R C N x (XN U {e})

Right-linear Context-free Grammars

Definition
A context-free grammar is right-linear if R C N x (XN U {e})

Example

There is right-linear context-free languages that generates all
strings of 1, O that end in 101

5—-0S
5$§—-1§
S —1A
A— 0B
B—1C

C —e¢

Languages generated by right-linear context-free grammars

Lemma
The class of languages generated by right-linear context-free
grammars are precisely the regular languages

Languages generated by right-linear context-free grammars

Lemma
The class of languages generated by right-linear context-free
grammars are precisely the regular languages

» For every such grammar G we can contruct a NFA that
accepts L (G)
1. For every non-terminal symbol of G we create a new state for
the NFA
2. For every rule A — aB we create a transition As 2 B,
3. For every rule A — € we define state As to be an accepting
state

Languages generated by right-linear context-free grammars

Lemma
The class of languages generated by right-linear context-free
grammars are precisely the regular languages

» For every such grammar G we can contruct a NFA that
accepts L (G)
1. For every non-terminal symbol of G we create a new state for
the NFA
2. For every rule A — aB we create a transition As 2 B,
3. For every rule A — € we define state As to be an accepting
state

» For every language L accepted by a DFA we can contruct a
right-linear contex-free grammar G such that L = L(G)

1. For every transition g = p we create a rule Q — aP
(we add @, P in N if they are not already there)

2. For every accepting state g we create a rule Q@ — ¢
(we add Q in N if it is not already there)

	Definitions
	General Grammars
	Context-Sensitive Grammars
	Context-Free Grammars

