Turing Machines and The Chomsky Hierarchy

November 24, 2011



Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
» N : set of non-terminal symbols
» S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules

v



Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
» N : set of non-terminal symbols
» S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules

» Relation =C (XU N)" x (XU N)*

v



Grammars

» Grammar G = (X, N, S, R)
» ¥ : set of terminal symbols
N : set of non-terminal symbols
S € N : start symbol
RC (ZUN)" x (ZUN)™: finite set of rules
» Relation =C (XU N)" x (XU N)*
» Relation —* C (X U N)* x (XU N)" is the reflexive-transitive
closure of —
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Languages generated by grammars

Lemma
The class of languages generated by grammars is the class of

recursively enumerable languages

» We can enumerate all possible derivations of strings from S
1. L:=1]5]
2. Pop out the first element of L (call it x)
3. if x € ¥* then print x
else for each derivation rule applicable on x add the result of
the application of the rule as the last element of L
4. if L#[] go to step 2



Languages generated by grammars

» Grammar derivations can be used to simulate the moves of a
Turing Machine, where the string being manipulated
represents the Turing Machine's configuration

» we define non-terminal symbols R, L

» For all ((g,0),(¢’,0’,—)) € § we create the derivations
So,q,0; — Ro'o}, q, for all o;

» For all ((g,0),(q’,0’,<)) € § we create the derivation
So,q,— L, q', 0’

» Forall ((g,0),(¢’,0’,—)) € § we create the derivation
So,q— So',q

» We create the derivations o;L — So; for all o;

» We create the derivations Ro; — ;S for all o;

» For all ((g,0), (yes,o’, m)) we create the derivation
So,q,— o’
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x € L(G)?

Lemma
Given grammar G and x € ¥* it is undecideable whether x € L(G)

» The Halting Problem (HP) is recursively enumerable so there
is a grammar G so that L(G) = HP

» We could construct a non-deterministic Turing Machine M
that simulates the rule applications of G ...
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Context-sensitive Grammars

Definition
A context-sensitive grammar is a grammar for which whenever
(x,y) € R we have |x| < |y]

Example

There is a context-sensitive grammar that generates the language
L={xx:xeX*}

S — a;a;
S — aiA;
S— a,-Sa,-
S — a;SA;
Aiaj — ajA;

Aje — aje

where a;,a; € X and A; € N\ {S}
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There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem

1. w:=S§, Store :== ()
2. Choose y ¢ Store such that w—'y
if |x| < |y| then halt with “no”
else if y = x then halt with “yes”
else Store := Store U{w}, w := y, repeat



x € L(G)?

Lemma
Given grammar G and x € L* it is decideable whether x € L(G)

There is a non-deterministic algorithm (we can construct a
non-deterministic Turing Machine) that decides this problem
1. w:=S§, Store :== ()
2. Choose y ¢ Store such that w—'y
if |x| < |y| then halt with “no”
else if y = x then halt with “yes”
else Store := Store U{w}, w := y, repeat

x|

Due to the restriction (x,y) = |x| < |y| we need at most Y_|Z|’
i=0
steps to surpass the length of x
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additional space n

1. Choose x1,x, ..., Xk so that
S—x — x— -+ — x, and
[xi| < [x]
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Languages generated by context-sensitive grammars

Lemma
The class of languages generated by context-sensitive grammars is

precisely NSPACE (n)

» There is a non-deterministic algorithm that decides L (G) with
additional space n

1. Choose x1,x, ..., Xk so that
S—x1 —xp— -+ — x, and
[xi| < Ix]

2. if xx = x then halt with "yes" else halt with “no”

» |f a non-deterministic Turing Machine using additional space n
decides L then there is a context-sensitive G such that
L=L(G)

» The string representation of the machine's configuration has
length n+ 3 at most

» We can use U (blank) as a terminal symbol of G

» We can design the grammar rules so that the string being
manipulated has always length n + 3 (padding with Li)

» But this is a context-sensitive grammar. . .
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Context-free Grammars

Definition
A grammar is context-free if, for all rules (x,y) € R, x € N

Example
There is a context-free grammar that generates the language of
balanced parentheses

S—SS
S—(S)
S—=0)

S—e¢
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x € L(G)?

Lemma
Given grammar G and x € L* it is in P to decide whether

x € L(G).

Papadimitriou gives a dynamic-programming algorithm which
solves this problem in polynomial time
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Right-linear Context-free Grammars

Definition
A context-free grammar is right-linear if R C N x (XN U {e})

Example

There is right-linear context-free languages that generates all
strings of 1, O that end in 101

5—-0S
5$§—-1§
S —1A
A— 0B
B—1C

C —e¢
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accepts L (G)
1. For every non-terminal symbol of G we create a new state for
the NFA
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3. For every rule A — € we define state As to be an accepting
state



Languages generated by right-linear context-free grammars

Lemma
The class of languages generated by right-linear context-free
grammars are precisely the regular languages

» For every such grammar G we can contruct a NFA that
accepts L (G)
1. For every non-terminal symbol of G we create a new state for
the NFA
2. For every rule A — aB we create a transition As 2 B,
3. For every rule A — € we define state As to be an accepting
state

» For every language L accepted by a DFA we can contruct a
right-linear contex-free grammar G such that L = L(G)

1. For every transition g = p we create a rule Q — aP
(we add @, P in N if they are not already there)

2. For every accepting state g we create a rule Q@ — ¢
(we add Q in N if it is not already there)
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