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Arthur-Merlin games

L € MA if there exists a polynomial-time deterministic TM M,
polynomials p, g, s.t. V string z, |z| =n
o if z € L then 32 Pry[M(z,y,2) = 1]
o if z ¢ L then Vz Pry[M(z,y,2) = 0]
where z € {0,1}4(") and y € {0, 1}#(")

L € AM if there exists a polynomial-time deterministic TM MM,
polynomials p, g, s.t. V string z, |z| =n

o if z € L then Pry[3zM(z,y,z) = 1]
o if z ¢ L then Pry[VzM(z,y,z) = 0]
where z € {0,1}4(") and y € {0, 1}7(*)
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Lemma

For every language L in AM and every polynomial g, there is a language
M in NP and a polynomial p such that, for all strings x, the fractions of
strings y of length p(|z|) that satisfyz oy € M is

o at least 1 —27902D) for z in L, and

o at most 2=z for z not in L, )
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t(n) : polynomially bounded function of n = |z

o AM(t(n)) and MA(2(n)) are the classes of languages accepted by
Arthur-Merlin games of length < ¢(n).
AM(poly) = MA(poly) = U{AM(n*) : k > 0} form the
Arthur-Merlin hierarchy.

o MA(1) = M = NP
o AM(1) = A = BPP
o AM(2) = AM
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In the quantifier notation
e NP = (3/V¥),co-NP = (Vv/3)
RP = (37/V)
BPP = (3*/37) = (3TV/v3aT) = (V3T /3TV)
MA = (3V/v3+) C (V3/31V) = AM
15 = (V3/3v)
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Theorem (Collapse Theorem [Babail)
For any polynomially bounded t(n) < 2,

AM(t(n)) = AM(¢(r) + 1) = MA(¢(n) + 1)

for constant k > 2

AM = AM(k) = MA(k + 1)

NP UBPP C MA C AM C AM(poly) C PSPACE

Theorem (Speedup Theorem [Babai, Moran])
For any t(n) < 2,

AM(2t(n)) = AM((n))

for constant k > 2
AM = AM(k) = MA(k + 1)
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An Arthur-Merlin game is an Interactive Proof system
AM(t(n)) C IP(t(n))
Goldwasser and Sipser showed that
IP(t(n)) C AM(t(n) + 2)

By the Collapse Theorem we have
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If co-NP is contained in AM, then co-AM s contained in AM. I

Suppose (V/3) C (V3/31V) then

co-AM = (37V/V3) C (3tv3/vaty) C (vat3/3tw) C (v3/31Y) = AM
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Theorem ([Boppana, Hastad, Zachos|)
If co-NP is contained in AM, then the polynomial-time hierarchy is
contained in AM C TI5.

= NP C AM
Assume S8 C (V3/3TY) then

5P ,, C (F3Tv/wv3a) C (Iv3/¥3HY) C (v33/3HW) = (v3/31V) = AM
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Corollary ([Boppana, Hastad, Zachos])

If the Graph Isomorphism is NP-complete, then the polynomial-time
hierarchy is contained in AM C TI5.

Suppose Graph Isomorphism is NP-complete.

Graph Isomorphism € co-AM (Goldreich, Micali, Wigderson).

Then NP C co-AM. Equivalently co-NP C AM.

The polynomial-time hierarcy collapses to AM. [
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BESSSSS———.
Theorem ([Babai, Moran])
Graph nonisomorphism belongs to AM.

Consider only connected graphs. X,Y connected, Z their disjoint union.
#automorphisms: X —a,Y — b, Z = ¢

Q@ XandY isomorphic = ¢ = 2ab
@ X and Y NOT isomorphic = ¢ = ab
Check (2) with approx. lower bound for a, b and approx upper bound for c
of 21/3.
@ Lower bounds exist in result of Theorem: VL € NP, Ve > 0, an
g-approximate lower bound protocol of class MA exists.

o Upper bound
d =#(distinct isomorphic copies of Z of its n vertices) = n!/c
So, we need a lower bound for d, that exists due to the Theorem.
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BESSSSS———.
Is Graph Isomorphism NP-complete? I

Graph Isomorphism € NP

If it is NP-complete then Graph Nonisomorphism is co-NP-complete.

And because Graph Nonisomorphism € AM, all co-NP-complete problems
are in AM.

Then co-NP C AM and NP C co-AM.

So, Graph Isomorphism is unlikely to be NP-complete.
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