
Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Interactive Proof Systems
IPs, AMs & PCPs

Antonis Antonopoulos

Theoretical Computer Science II: Structural Complexity

Computation and Reasoning Laboratory
National Technical University of Athens

March 2012

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

1 Interactive Proofs
Introduction
The class IP

2 Arthur-Merlin Games
Definitions
Basic Properties

3 Arithmetization & The power of IPs
Introduction
Shamir’s Theorem
Other Arithmetization Results

4 PCPs
Definitions

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the
verifier. Each time rumor gets around that a student
somewhere proved P = NP, people ask “Has Karp seen
the proof?” (they hardly even ask the student’s name).
Perhaps the verifier is most important that the prover.”
(from [BM88])

The notion of a mathematical proof is related to the
certificate definition of NP.

We enrich this scenario by introducing interaction in the
basic scheme:
The person (or TM) who verifies the proof asks the person
who provides the proof a series of ”queries”, before he is
convinced, and if he is, he provide the certificate.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

Introduction

The first person will be called Verifier, and the second
Prover.

In our model of computation, Prover and Verifier are
interacting Turing Machines.

We will categorize the various proof systems created by using:

various TMs (nondeterministic, probabilistic etc)
the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)

We say that a language L has a k-round deterministic interactive
proof system if there is a deterministic Turing Machine V that on
input x , α1, α2, . . . , αi runs in time polynomial in |x |, and can have
a k-round interaction with any TM P such that:

x ∈ L⇒ ∃P : 〈V ,P〉(x) = 1 (Completeness)

x /∈ L⇒ ∀P : 〈V ,P〉(x) = 0 (Soundness)

The class dIP contains all languages that have a k-round
deterministic interactive proof system, where p is polynomial in the
input length.

〈V ,P〉(x) denotes the output of V at the end of the
interaction with P on input x , and αi the exchanged strings.
The above definition does not place limits on the
computational power of the Prover!

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

Warmup: Interactive Proofs with deterministic Verifier

But...

Theorem

dIP = NP

Proof: Trivially, NP ⊆ dIP. X
Let L ∈ dIP:

A certificate is a transcript (α1, . . . , αk) causing V to accept,
i.e. V (x , α1, . . . , αk) = 1.
We can efficiently check if V (x) = α1, V (x , α1, α2) = α3

etc...
If x ∈ L such a transcript exists!
Conversely, if a transcript exists, we can define define a proper
P to satisfy: P(x , α1) = α2, P(x , α1, α2, α3) = α4 etc., so
that 〈V ,P〉(x) = 1, so x ∈ L.

So L ∈ NP! �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

The class IP

Probabilistic Verifier: The Class IP

We saw that if the verifier is a simple deterministic TM, then
the interactive proof system is described precisely by the class
NP.

Now, we let the verifier be probabilistic, i.e. the verifier’s
queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer k ≥ 1 (that may depend on the input length), a
language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a T.M. P such
that:

x ∈ L⇒ ∃P : Pr [〈V ,P〉(x) = 1] ≥ 2
3 (Completeness)

x /∈ L⇒ ∀P : Pr [〈V ,P〉(x) = 1] ≤ 1
3 (Soundness)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

The class IP

Probabilistic Verifier: The Class IP

Definition

We also define:
IP =

⋃
c∈N

IP[nc]

The “output” 〈V ,P〉(x) is a random variable.

We’ll see that IP is a very large class! (⊇ PH)

As usual, we can replace the completeness parameter 2/3 with
1− 2−n

s
and the soundness parameter 1/3 by 2−n

s
, without

changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(perfect completeness), without changing the class, but
replacing the soundness constant 1/3 with 0, is equivalent
with a deterministic verifier, so class IP collapses to NP.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

The class IP

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G1 and G2 are isomorphic, if there exists a
permutation π of the labels of the nodes of G1, such that
π(G1) = G2. If G1 and G2 are isomorphic, we write G1

∼= G2.

GI: Given two graphs G1,G2, decide if they are isomorphic.

GNI: Given two graphs G1,G2, decide if they are not
isomorphic.

Obviously, GI ∈ NP and GNI ∈ coNP.

This proof system relies on the Verifier’s access to a private
random source which cannot be seen by the Prover, so we
confirm the crucial role the private coins play.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

1 Interactive Proofs
Introduction
The class IP

2 Arthur-Merlin Games
Definitions
Basic Properties

3 Arithmetization & The power of IPs
Introduction
Shamir’s Theorem
Other Arithmetization Results

4 PCPs
Definitions

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Babai’s Arthur-Merlin Games

Definition (Extended (FGMSZ89))

An Arhur-Merlin Game is a pair of interactive TMs A and M, and
a predicate R such that:

On input x , exactly 2q(|x |) messages of length m(|x |) are
exchanged, q,m ∈ poly(|x |).

A goes first, and at iteration 1 ≤ i ≤ q(|x |) chooses u.a.r. a
string ri of length m(|x |).

M’s reply in the i th iteration is yi = M(x , r1, . . . , ri) (M’s
strategy).

For every M ′, a conversation between A and M ′ on input x
is r1y1r2y2 · · · rq(|x |)yq(|x |).

The set of all conversations is denoted by CONV M′
x ,

|CONV M′
x | = 2q(|x |)m(|x |).

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Babai’s Arthur-Merlin Games

Definition (cont’d)

The predicate R maps the input x and a conversation to a
Boolean value.

The set of accepting conversations is denoted by ACCR,M
x ,

and is the set:

{r1 · · · rq|∃y1 · · · yq s.t. r1y1 · · · rqyq ∈ CONV M
x ∧R(r1y1 · · · rqyq) = 1}

A language L has an Arthur-Merlin proof system if:

There exists a strategy for M, such that for all x ∈ L:
ACCR,M

x

CONVM
x
≥ 2

3 (Completeness)

For every strategy for M, and for every x /∈ L:
ACCR,M

x

CONVM
x
≤ 1

3

(Soundness)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Definitions

So, with respect to the previous IP definition:

Definition

For every k , the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Definitions

So, with respect to the previous IP definition:

Definition

For every k , the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier

Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Definitions

So, with respect to the previous IP definition:

Definition

For every k , the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Public vs. Private Coins

Theorem

GNI ∈ AM[2]

Theorem

For every p ∈ poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly] = AM[poly]

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

MA ⊆ AM

MA[1] = NP, AM[1] = BPP

AM could be intuitively approached as the probabilistic
version of NP (usually denoted as AM = BP·NP).

AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩ Πp
2 .

NPBPP ⊆MA, MABPP = MA, AMBPP = AM and
AM∆Σp

1 = AMNP∩coNP = AM

If we consider the complexity classes AM[k] (the languages
that have Arthur-Merlin proof systems of a bounded number
of rounds, they form an hierarchy:

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Are these inclusions proper ? ? ?

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

NP // MA //

$$JJJJJJJJJJ Σp
2

AM

��----------------------

P //

EE����������������

��3333333333333333 BPP

CC����������������

��7777777777777777

coAM

HH����������������������

coNP // coMA //

::tttttttttt
Πp

2

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem

MA ⊆ AM

Proof:
Obvious from (2): (∃∀/∀∃+) ⊆ (∀∃/∃+∀). �

Theorem

i AM ⊆ Πp
2

ii MA ⊆ Σp
2 ∩ Πp

2

Proof:
i) AM = (∀∃/∃+∀) ⊆ (∀∃/∃∀) = Πp

2

ii) MA = (∃∀/∀∃+) ⊆ (∃∀/∀∃) = Σp
2 , and

MA ⊆ AM⇒MA ⊆ Πp
2 . So, MA ⊆ Σp

2 ∩ Πp
2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Proof:

The general case is implied by the generalization of
BPP-Theorem (1) & (2):

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) =
(Q1∀∃+Q2/Q3∃+∀Q4) (1′)

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4) (2′)

Using the above we can easily see that the Arthur-Merlin
Hierarchy collapses at the second level. (Try it!) �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Measure One Results

PA 6= NPA, for almost all oracles A.

PA = BPPA, for almost all oracles A.

NPA = AMA, for almost all oracles A.

Definition

almostC =
{

L|PrA∈{0,1}∗
[
L ∈ CA

]
= 1
}

Theorem

i almostP = BPP [BG81]

ii almostNP = AM [NW94]

iii almostPH = PH

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Basic Properties

Measure One Results

Theorem (Kurtz)

For almost every pair of oracles B,C :

i BPP = PB ∩ PC

ii almostNP = NPB ∩NPC

Indicative Open Questions

Does exist an oracle separating AM from almostNP?

Is almostNP contained in some finite level of
Polynomial-Time Hierarchy?

Motivated by [BHZ] : If coNP ⊆ almostNP, does it follow
that PH collapses?

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

1 Interactive Proofs
Introduction
The class IP

2 Arthur-Merlin Games
Definitions
Basic Properties

3 Arithmetization & The power of IPs
Introduction
Shamir’s Theorem
Other Arithmetization Results

4 PCPs
Definitions

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP ⊆ Σp

2 , and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?

We know that for fixed k ∈ N, IP[k] collapses to

IP[k] = AM = BP ·NP

a class that is “close” to NP (under similar assumptions, the

non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)

IP = PSPACE

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Introduction

The power of Interactive Proofs

Lemma 1

IP ⊆ PSPACE

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE ⊆ IP

For simplicity, we will construct an Interactive Proof for
UNSAT (a coNP-complete problem), showing that:

Theorem

coNP ⊆ IP

Let N be a prime.

We will translate a formula φ with m clauses and n variables
x1, . . . , xn to a polynomial p over the field (modN) (where
N > 2n · 3m), in the following way:

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Arithmetization

Arithmetic generalization of a CNF Boolean Formula.

T −→ 1
F −→ 0
¬x −→ 1− x
∧ −→ ×
∨ −→ +

Example

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ x4)
↓

(x3 + (1− x5) + x17) · (x5 + x9) · ((1− x3) + (1− x4))

Each literal is of degree 1, so the polynomial p is of degree at
most m.
Also, 0 < p < 3m.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}

...
qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}

checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

If φ is unsatisfiable,then∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn) ≡ 0 (modN)

and the protocol will succeed.

Also, the arithmetization can be done in polynomial time, and
if we take N = 2O(n+m), then the elements in the field can be
represented by O(n + m) bits, and thus an evaluation of p in
any point of {0, . . . ,N − 1} can be computed in polynomial
time.

We have to show that if φ is satisfiable, then the verifier will
reject with high probability.

If φ is satisfiable, then∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn) 6= 0 (modN)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

So, p1(01) + p1(1) 6= 0, so if the prover send p1 we ’re done.

If the prover send q1 6= p1, then the polynomials will agree on
at most m places. So, Pr [p1(r1) 6= q1(r1)] ≥ 1− m

N .

If indeed p1(r1) 6= q1(r1) and the prover sends p2 = q2, then
the verifier will reject since q2(0) + q2(1) = p1(r1) 6= q1(r1).

Thus, the prover must send q2 6= p2.

We continue in a similar way: If qi 6= pi , then with probability
at least 1− m

N , ri is such that qi (ri) 6= pi (ri).

Then, the prover must send qi+1 6= pi+1 in order for the
verifier not to reject.

At the end, if the verifier has not rejected before the last
check, Pr [pn 6= qn] ≥ 1− (n − 1)mN .

If so, with probability at least 1− m
N the verifier will reject

since, qn(x) and p(r1, . . . , rn−1, x) differ on at least that
fraction of points.

The total probability that the verifier will accept if at most nm
N .

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Arithmetization of QBF

∃ −→
∑

∀ −→
∏

Example

∀x1∃x2[(x1 ∧ x2) ∨ ∃x3(x̄2 ∧ x3)]

↓

∏
x1∈{0,1}

∑
x2∈{0,1}

(x1 · x2) +
∑

x3∈{0,1}

(1− x2) · x3


Theorem

A closed QBF is true if and only if tha value of its arithmetic form
is non-zero.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Arithmetization of QBF

If a QBF is true, its value could be quite large:

Theorem

Let A be a closed QBF of size n. Then, the value of its arithmetic
form cannot exceed O

(
22n
)
.

Since such numbers cannot be handled by the protocol, we
reduce them modulo some -smaller- prime p:

Theorem

Let A be a closed QBF of size n. Then, there exists a prime p of
length polynomial in n, such that its arithmetization

A′ 6= 0(modp)⇔ A is true.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Arithmetization of QBF

A QBF with all the variables quantified is called closed, and
can be evaluated to either True or False.

An open QBF with k > 0 free variables can be interpreted as
a boolean function {0, 1}k → {0, 1}.
Now, consider the language of all true quantified boolean
formulas:

TQBF = {Φ|Φ is a true quantified Boolean formula}

It is known that TQBF is a PSPACE-complete language!

So, if we have a interactive proof protocol recognizing TQBF,
then we have a protocol for every PSPACE language.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Shamir’s Theorem

Protocol for TQBF

Given a quantified formula

Ψ = ∀x1∃x2∀x3 · · · ∃xn φ(x1, . . . , xn)

we use arithmetization to construct the polynomial Pφ. Then,
Ψ ∈ TQBF if and only if∏

b1∈{0,1}∗

∑
b2∈{0,1}∗

∏
b3∈{0,1}∗

· · ·
∑

bn∈{0,1}∗
Pφ(b1, . . . , bn) 6= 0

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs

Definition (PRABs)

A Positive Retarded Arithmetic Program with Binary Substitutions
(PRAB) is a sequence {p1, . . . , pt} of “instructions” such that, for
every k, one of the following holds:

1 pk is constant (0 or 1).

2 pk = xi , for some i ≤ k .

3 pk = 1− xi , for some i ≤ k .

4 pk = pi + pj , for some i , j ≤ k.

5 pk = pipj , for some i , j , such that i + j ≤ k.

6 pk = pj(xi = 0) or pj(xi = 1), for some i , j ≤ k.

Such a program defines a sequence p̃k of polynomials in an
obvious way!
We say that P computes p̃t , the last member of the sequence.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs

A family P1,P2, . . . of PRABs is uniform, if, upon input 1n, a
polynomial-time deterministic TM computes Pn, and the
polynomial P̃n computed only depends on x1, . . . , xn.

Theorem 1 (Characterization of #P)

For a function f : {0, 1}∗ → Z+, the following are equivalent:

1 f ∈ #P

2 There exists a uniform family of PRABs Pn, such that for
every x ∈ {0, 1}∗,

f (x) = P̃|x |(x)

By P(x) we mean P(x1, . . . , xn), where x = x1x2 · · · xn ∈ {0, 1}n

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

Reminder: Operators on Complexity Classes

Let C be an arbitrary complexity class.

L ∈ P · C if there exists L′ ∈ C and p ∈ poly such that
∀x ∈ {0, 1}∗:

x ∈ L⇒ ∃1/2y L′(< x , y >)
x /∈ L⇒ ∃1/2y ¬L′(< x , y >)

L ∈ BP · C if there exists L′ ∈ C and p ∈ poly such that
∀x ∈ {0, 1}∗:

x ∈ L⇒ ∃+y L′(< x , y >)
x /∈ L⇒ ∃+y ¬L′(< x , y >)

L ∈ ⊕ · C if there exists L′ ∈ C and p ∈ poly such that
∀x ∈ {0, 1}∗:

x ∈ L⇒ ⊕y L′(< x , y >)
x /∈ L⇒ ⊕y ¬L′(< x , y >)

where for every certificate y : |y | = p(|x |), and by ⊕y we mean
that the number of y ’s satisfying the condition is odd.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

Theorem 2

For a fuction f : {0, 1}∗ → {0, 1}. the following are equivalent:

1 f ∈ BP · ⊕ · P.

2 There exists a uniform family of PRABs Pn, such that the
polynomial P̃n computed by Pn has n + m(n) variables for
m ∈ poly(n), and ∀x ∈ {0, 1}∗:

f (x) = P̃|x |(x , r) mod 2

for at least 2/3 of the strings r ∈ {0, 1}m(|x |).

(The same result holds for P · ⊕ · P.)

Proof: By definition, f ∈ BP · ⊕ · P iff

(∃g ∈ #P)(∃+r ∈ {0, 1}m(|x |))(∀x ∈ {0, 1}∗) f (x) = g(x , r) mod 2

The claim is immediate from Theorem 1. Analogously for P ·⊕ ·P.

�

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

Based on the previous results, we can also show that:

Theorem 3

P · ⊕ · P ⊆ P#P

Proof (Toda):
...

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs and Polynomial Hierarchy

Can we describe the Polynomial Hierarchy by such programs?

We encode quantified Boolean Formulas with a bounded
number of quantifier alternations:

ψi (xi+1, . . . , xd) = Qixiψi−1(xi , . . . , xd)

, where Qi ∈ {∃,∀}, and ψ0 is a 3CNF formula.

Theorem 4

Partially quantified Boolean formulas with a bounded number of
quantifier alternations can be represented probabilistically by PRABs
mod2 in the sense that for any ψi , there exists a PRAB P i such that:

P̃ i (xi+1, . . . , xd , r1, . . . , ri) = ψi (xi+1, . . . , xd)

for all but an arbitrarily exponential small fraction of rj ’s, |rj | ≤ p(n) for
some p ∈ poly .

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs and Polynomial Hierarchy

Can we describe the Polynomial Hierarchy by such programs?

We encode quantified Boolean Formulas with a bounded
number of quantifier alternations:

ψi (xi+1, . . . , xd) = Qixiψi−1(xi , . . . , xd)

, where Qi ∈ {∃,∀}, and ψ0 is a 3CNF formula.

Theorem 4

Partially quantified Boolean formulas with a bounded number of
quantifier alternations can be represented probabilistically by PRABs
mod2 in the sense that for any ψi , there exists a PRAB P i such that:

P̃ i (xi+1, . . . , xd , r1, . . . , ri) = ψi (xi+1, . . . , xd)

for all but an arbitrarily exponential small fraction of rj ’s, |rj | ≤ p(n) for
some p ∈ poly .

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs and Polynomial Hierarchy

So, finally, we have:

Theorem 2 & 4 ⇒ PH ⊆ BP · ⊕ · P
And by using Theorem 3 : P · ⊕ · P ⊆ P#P

we obtain an alternative proof of a famous result:

Toda’s Theorem

PH ⊆ P#P

The “connecting” inclusion BP · ⊕ · P ⊆ P · ⊕ · P follows
trivially.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Other Arithmetization Results

PRABs and Polynomial Hierarchy

So, finally, we have:

Theorem 2 & 4 ⇒ PH ⊆ BP · ⊕ · P
And by using Theorem 3 : P · ⊕ · P ⊆ P#P

we obtain an alternative proof of a famous result:

Toda’s Theorem

PH ⊆ P#P

The “connecting” inclusion BP · ⊕ · P ⊆ P · ⊕ · P follows
trivially.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Epilogue: Probabilstically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).
(How long can be in the adaptive case?)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Epilogue: Probabilstically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).
(How long can be in the adaptive case?)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

PCP Definitions

Definition

PCP Verifiers Let L be a language and q, r : N→ N. We say that
L has an (r(n), q(n))-PCP verifier if there is a probabilistic
polynomial-time algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to
a string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let V π(x) denote the random variable representing V ’s output on
input x and with random access to π.

Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [V π(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [V π(x) = 1] ≤ 1
2

We say that a language L is in PCP(r(n), q(n)) if L has a
(O(r(n)),O(q(n)))-PCP verifier.

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

Obviously:

PCP(0, 0) = ?
PCP(0, poly) = ?
PCP(poly , 0) = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

Obviously:

PCP(0, 0) = P
PCP(0, poly) = ?
PCP(poly , 0) = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

Obviously:

PCP(0, 0) = P
PCP(0, poly) = NP
PCP(poly , 0) = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

Obviously:

PCP(0, 0) = P
PCP(0, poly) = NP
PCP(poly , 0) = coRP

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

Obviously:

PCP(0, 0) = P
PCP(0, poly) = NP
PCP(poly , 0) = coRP

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem

NP = PCP(log n, 1)

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

The proof is constructive: Transform any NP-witness into an
oracle that makes the PCP verifier accept with probability 1.

Proof Overview

NP ⊆ PCP(log n, poly log n)

NP ⊆ PCP(polyn, 1)

Compose the above two: The “inner verifier” is used for
probabilistically verifying the acceptance criteria of the
“outer” verifier.

The composition of the two yields a PCP with:
r(n) = r ′(n) + r ′′(q′(n)) and q(n) = q′′(q′(n))

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Definitions

Main Results

The proof is constructive: Transform any NP-witness into an
oracle that makes the PCP verifier accept with probability 1.

Proof Overview

NP ⊆ PCP(log n, poly log n)

NP ⊆ PCP(polyn, 1)

Compose the above two: The “inner verifier” is used for
probabilistically verifying the acceptance criteria of the
“outer” verifier.

The composition of the two yields a PCP with:
r(n) = r ′(n) + r ′′(q′(n)) and q(n) = q′′(q′(n))

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Further Reading

S. Arora, B. Barak: Computational Complexity: A Modern
Approach, Cambridge University Press, 2009

Oded Goldreich: Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 2008

L. A. Hemaspaandra & M. Ogihara, The Complexity Theory
Companion, Springer, 2002

L. Trevisan, Lecture Notes in Computational Complexity, 2004, UC
Berkeley.

S. Goldwasser and M. Sipser, Private coins versus public coins in
interactive proof systems, In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, STOC ’86

L. Babai & S. Moran, Arthur-Merlin Games: A randomized proof
system, and a hierarchy of complexity classes, J. Comput. Syst. Sci.,
36(2):254-276, 1988

Interactive Proofs Arthur-Merlin Games Arithmetization & The power of IPs PCPs Refs

Stathis Zachos and Martin Fürer, Probabilistic quantifiers vs.
distrustful adversaries, In Foundations of Software Technology and
Theoretical Computer Science, volume 287 of Lecture Notes in
Computer Science, pages 443-455, Springer Berlin / Heidelberg,
1987.

S. Zachos, Probabilistic quantifiers, adversaries, and complexity
classes: an overview, In Proc. of the conference on Structure in
complexity theory, pages 383-400, New York, NY, USA, 1986.
Springer-Verlag New York, Inc.

A. Shamir, IP = PSPACE, J. ACM, 39:869-877, October 1992

L. Babai and L. Fortnow, Arithmetization: A new method in
structural complexity theory, Computational Complexity, 1:41-66,
1991

S. Arora, How NP got a new definition: a survey of probabilistically
checkable proofs, CoRR cs.CC/0304038, 2003

Thank You!

	Interactive Proofs
	Introduction
	The class IP

	Arthur-Merlin Games
	Definitions
	Basic Properties

	Arithmetization & The power of IPs
	Introduction
	Shamir's Theorem
	Other Arithmetization Results

	PCPs
	Definitions

	Refs

