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1 Complexity Classes

1.1 Introduction

We present an alternative characterization of complexity classes using
quantifiers, and especially those needed for the quantification implied by
the definition of each class. This notation provides a uniform description of
complexity classes defined in various contexts (deterministic, probabilistic,
interactive), and we’ll be able to obtain immediate relations and inclusions
among them.

For complexity classes like P, NP and their generalizations, the classical
existential and universal quantifiers suffice, but in order to describe classes
using Probabilistic Turing Machines, we will need a new one, which assures
that a computation has “probabilistic” advantage:

Definition 1.1 (Majority Quantifier). Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be
a predicate, and ε a rational number in

(
0, 1

2

)
. We denote by (∃+y, |y| =

k)R(x, y) the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length k for which

R(x, y) holds.”

We call ∃+ the overwhelming majority quantifier.

The overwhelming quantifier provides a “threshold” for the number of
certificates, assuring that the fraction of 2k possible strings in {0, 1}k (that
is, of length k) which accepts the computation (or satisfies the predicate R)
is bounded away from 50% by a fixed amount ε.

We can generalize this quantifier by attaching the fraction of accepting
computations as a parameter. That is, ∃+

r means that the fraction r of the
possible certificates of a certain length satisfy the predicate for the certain
input. It is easy to see that: ∃+ = ∃+

1/2+ε = ∃+
2/3 = ∃+

3/4 = ∃+
0.99 = ∃+

1−2p(|x|)
,
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where |x| denotes the length of the input x. Intuitively, this means that
we can “increase” the fraction of the accepting branches (the acceptance
probability) by indepedent repetitions of the computation.

We also introduce a new notation for an arbitrary complexity class, which
utilizes the quantifiers’ role in the classical definition:

Definition 1.2. We denote as C = (Q1/Q2), where Q1, Q2 ∈ {∃, ∀, ∃+},
the class C of languages L satisfying:

• x ∈ L⇒ Q1y R(x, y)

• x /∈ L⇒ Q2y ¬R(x, y)

In the above definition, we easily notice that:

coC = co(Q1/Q2) = (Q2/Q1)

So, using the classical existential and universal quantifiers we can define
the basic complexity classes, by implying their definitional properties. For
example, for languages in class P the computation path either accepts, either
rejects. So, it is easy to see that P = (∀/∀).

On the other hand, for languages in class NP there is a computation
tree for each input, and we accept it if there is an accepting branch, or we
reject it if all the branches reject. Hence, we have that: NP = (∃/∀). The
complementary class coNP can be also defined as coNP = (∀/∃).

A family of complexity classes that are naturally defined by alternating
quantifiers is the Polynomial Hierarchy. These classes can be considered as
a natural generalization of NP. Recall that:

Definition 1.3 (Polynomial-Time Hierarchy). A language L ∈ Σp
k, k ∈ N,

iff there exists a polynomial-time computable predicate R(x, y1, y2, . . . , yk),
such that, for |yi| ≤ p(n), i ∈ {1, . . . , k}, p ∈ poly(n):

x ∈ L⇔ ∃y1∀y2∃y3 · · ·Qkyk R(x, y1, y2, . . . , yk)

where Qk is ∃ if k is odd, and ∀ if k is even.

Also, a language L ∈ Πp
k iff there exists a polynomial-time computable

predicate R(x, y1, y2, . . . , yk), such that, for |yi| ≤ p(n), i ∈ {1, . . . , k}, p ∈
poly(n):

x ∈ L⇔ ∀y1∃y2∀y3 · · ·Qkyk R(x, y1, y2, . . . , yk)

where Qk is ∀ if k is odd, and ∃ if k is even.

An equivalent definition can be given recursively using oracles: Σp
k =

NPΣp
k−1 and Πp

k = coNPΣp
k−1 , while Σp

0 = Πp
0 = P. So, we have that

Σp
1 = NP, Πp

1 = coNP, Σp
2 = NPNP and so on.

Using quantifier notation, we can re-define these complexity classes as:
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• Σp
2 = (∃∀/∀∃), Πp

2 = (∀∃/∃∀), and in general:

• Σp
k = (∃∀ · · ·Qm)/∀∃ · · ·Qn), where:

– Qm represents ∃, if k is odd, or ∀, if k is even, and

– Qn represents ∀, if k is odd, or ∃, if k is even.

• Πp
k = (∀∃ · · ·Qm/∃∀ · · ·Qn), where:

– Qm represents ∀, if k is odd, or ∃, if k is even.

– Qn represents ∃, if k is odd, or ∀, if k is even.

1.2 Randomized Classes

Using the overwhelming majority quantifier, the following characteriza-
tions are immediate from the definition of each class:

• BPP (Bounded two-sided error, “Monte-Carlo”):

By BPP ’s definition we have:{
x ∈ L⇒ Pr [accept ] ≥ 2/3
x /∈ L⇒ Pr [reject ] ≥ 2/3

⇒{
x ∈ L⇒ Pr [R(x)] ≥ 2/3
x /∈ L⇒ Pr [¬R(x)] ≥ 2/3

, for a predicate R ∈ P ⇒{
x ∈ L⇒ ∃+y R(x, y)
x /∈ L⇒ ∃+y ¬R(x, y)

⇒ BPP = (∃+/∃+)

• RP (Bounded one-sided error, “Atlantic City”):
Similarly:{
x ∈ L⇒ Pr [accept ] ≥ 2/3
x /∈ L⇒ Pr [reject ] = 1

⇒{
x ∈ L⇒ Pr [R(x)] ≥ 2/3
x /∈ L⇒ Pr [¬R(x)] = 1

, for a predicate R ∈ P ⇒{
x ∈ L⇒ ∃+y R(x, y)
x /∈ L⇒ ∀y ¬R(x, y)

⇒ RP = (∃+/∀)

• Obviously, coRP = (∀/∃+)

So, we have created alterative definitions for the most usual complexity
classes. Now, we can explore what kind of “operations” we can perform
with these quantifiers. Firstly, we determine when we can swap ∀ and ∃+:
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Lemma 1.1 (Swapping Lemma). Let R(x, y, z) be a predicate that holds
only if |y| = |z| = p(n) for some polynomial p, where n = |x|, and let C
be a set of strings such that ∀v ∈ C |v| = p(n) and |C| ≤ p(n). Then, for
|y| = |z| = p(n):

i. ∀y∃+z R(x, y, z)⇒ ∃+C∀y
∨
z∈C R(x, y, z)

ii. ∀z∃+
1−2−ny R(x, y, z)⇒ ∀C∃+y

∧
z∈C R(x, y, z)

Proof: (i) Assume that ∀y∃+z R(x, y, z) holds. Let p ∈ poly(n) such
that for all y with |y| ≤ p(n) and considering only z with |z| ≤ p(n):
Pr [{z| R(x, y, z)}] > 1

2 + ε. Also, let q(n) = p(n) + 3. We will estimate the
probability of the event ¬∀y

∨
z∈C R(x, y, z):

Pr

[{
C | ∃y :

∧
z∈C
¬R(x, y, z)

}]
= Pr

 ⋃
|y|≤p(n)

{
C |

∧
z∈C
¬R(x, y, z)

}

≤
∑
|y|≤p(n)

Pr

[{
C |

∧
z∈C
¬R(x, y, z)

}]
≤

∑
|y|≤p(n)

q(n)∏
i=1

1

2
≤ 2p(n)+1·

(
1

2

)q(n)

≤ 1

4

Note that the predicate R′(x, y, z) =
∨
z∈C R(x, y, z) is polynomial-time

computable, therefore for most of the C:
∨
z∈C R(x, y, z), that is

∃+C∀y
∨
z∈C R(x, y, z).

(ii) Without loss of generality, we can assume that ∀x∀z Pr [{z| R(x, y, z)}] ≥
1 − 1/2p(n) for some p ∈ poly(n). So, for any z, |z| = p(n), we have that
Pr [¬R(x, y, z)] ≤ 2p(n). For a given C, |C| ≤ q(n):

Pr

[{
y |
∨
z∈C
¬R(x, y, z)

}]
≤
∑
z∈C

Pr [{y|¬R(x, y, z)}] ≤ q(n)

2p(n)
<

1

4

for sufficiently large n. Therefore, we have that ∀C∃+y
∧
z∈C R(x, y, z).

The above lemma, can be viewed in terms of a binary matrix A of size
2p(n) × 2p(n), with A(y, z) ⇔ R(x, y, z). The (i) part states that if every
row of A has more than (2/3)p(n) many 1’s, then for the majority of the
choices of p(n) many columns, every row of A contains at least one 1 in
these columns. Similarly for part (ii).

We can prove, using the Swapping Lemma, an alternative, “decisive”
characterization of BPP, stated in the following theorem:
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Theorem 1.2 (BPP Theorem). The following are equivalent:

i. L ∈ BPP.

ii. There exists a polynomial-time computable predicate R and a polyno-
mial p, such that for all x, with |x| = n, and |y| = |z| = p(n):

x ∈ L⇒ ∃+y∀z R(x, y, z)

x /∈ L⇒ ∀y∃+z ¬R(x, y, z)

iii. There exists a polynomial-time computable predicate R and a polyno-
mial p, such that for all x, with |x| = n, and |y| = |z| = p(n):

x ∈ L⇒ ∀y∃+z R(x, y, z)

x /∈ L⇒ ∃+y∀z ¬R(x, y, z)

Proof: (i ⇒ ii) Let L ∈ BPP. Then, by definition, there exists a polynomial-
time computable predicate Q and a polynomial q such that for all x’s of
length n:

x ∈ L⇒ ∃+y Q(x, y)

x /∈ L⇒ ∃+y ¬Q(x, y)

Using Lemma 1.1(i) we have1, for all x’s of length n and for some y, z, |y| =
|z| = q(n):
x ∈ L⇒ ∃+z Q(x, z)⇒ ∀y∃+z Q(x, y⊕z)⇒ ∃+C∀y [∃(z ∈ C) Q(x, y ⊕ z)],
where C denotes (as in the Swapping Lemma’s formulation) a set of q(n)
strings, each of length q(n).
On the other hand, by using Lemma 1.1(ii) we similarly have:
x /∈ L⇒ ∃+y ¬Q(x, z)⇒ ∀z∃+y ¬Q(x, y⊕z)⇒ ∀C∃+y [∀(z ∈ C) ¬Q(x, y ⊕ z)].
Now, we only have to assure that the appeared predicates ∃z ∈ C Q(x, y⊕z)
and ∀z ∈ C ¬Q(x, y⊕ z) are computable in polynomial time (Note that the
above expressions are equivalent to

∨
z∈C ¬R(x, y, z) and

∧
z∈C ¬R(x, y, z)

we met in Swapping Lemma.): Recall that in Swapping Lemma’s formula-
tion we demanded |C| ≤ p(n) and that for each v ∈ C : |v| = p(n). This
means that we seek if a string of polynomial length exists, or if the predi-
cate holds for all such strings in a set with polynomial cardinality, procedure
which can be surely done in polynomial time.

(ii ⇒ i) Conversely, assume that there exists a predicate R and a polyno-
mial p, as stated is (ii). Then, for each string w of length 2p(n), we “divide”
it in two halfs w1, w2, such that w = w1 ◦w2 and |w1| = |w2| = p(n). Then,
for each x with |x| = n, and |y| = |z| = p(n):

1We define the XOR (eXclusive OR) operator ⊕ of two strings of the equal length as
the bit-by-bit mod2 addition. That is: 0⊕ 0 = 1⊕ 1 = 0, and 0⊕ 1 = 1⊕ 0 = 1.
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x ∈ L⇒ ∃+y∀z R(x, y, z)⇒ ∃+w(|w| = 2p(n)) R(x,w1, w2)
x /∈ L⇒ ∀y∃+z R(x, y, z)⇒ ∃+w(|w| = 2p(n)) ¬R(x,w1, w2)

(i ⇒ iii) It follows immediately from the fact that BPP is closed under
complementation (coBPP = BPP).

In other words, Theorem 1.2 states that:

BPP = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1)

The above characterization of BPP is decisive in the sense that if we
replace the ∃+ quantifier with ∃ (if “+” is dropped), then we can decide
whether x ∈ L or x /∈ L. That is, the two predicates are still complementary2

to each other, so exactly one holds for x. Note that this doesn’t hold for the
(∃+/∃+) characterization of BPP, because if we replace the ∃+ quantifier
with ∃, the two resulting predicates are not complementary, and they do not
define a complexity class.

By replacing in (1) the quantifier ∃+ with ∃ (why is this possible? ) we can
obtain immediately the following result, known as the Sipser-Gács Theorem:

Corollary 1.3. BPP ⊆ Σp
2 ∩Πp

2

Theorem 1.2 can be generalized for sequences of quantifiers (denoted as
Qi):

Corollary 1.4.

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) = (Q1∀∃+Q2/Q3∃+∀Q4)

Using quantifier characterizations, we also have trivially many inclusions
between complexity classes:

• P ⊆ RP, since (∀/∀) ⊆ (∃+/∀) (for all implies for most).

• RP ⊆ BPP, since (∃+/∀) ⊆ (∃+/∃+) (same reason).

• RP ⊆ NP, since (∃+/∀) ⊆ (∃/∀) (for most implies for at least one).

The main inclusions are depicted in the following Hasse diagrams (“→”
denotes “⊆”):

2Two predicates R and P are called complementary if R⇒ ¬P .
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PSPACE

∆Σp
2

OO

coNP

88qqqqqqqqqq
NP

eeKKKKKKKKKK

BPP

OO

coRP

88ppppppppppp

OO

RP

ffLLLLLLLLLL

OO

ZPP

ffNNNNNNNNNNN

88rrrrrrrrrr

P

OO

(∃∀/∀∃) ∩ (∀∃/∃∀)

(∀/∃)

66mmmmmmmmmmmmm
(∃/∀)

hhQQQQQQQQQQQQQ

(∃+/∃+)

OO

(∀/∃+)

66nnnnnnnnnnnn

OO

(∃+/∀)

hhPPPPPPPPPPPP

OO

(∀/∀)

hhQQQQQQQQQQQQQ

66nnnnnnnnnnnnn

2 Arthur-Merlin Games

2.1 Introduction

In this section, we consider the interaction model between two Turing
Machines as a “game”. This setting is very useful to Complexity Theory,
for placing upper bounds in problems’ complexity, and on the other hand
in Cryptography, for proving the security of cryptographic protocols against
(efficient) computational attacks. The terminology used in this games is
mainly anthropomorphic, known as “Arthur-Merlin” Games.

“King Arthur recognizes the supernatural intellectual abilities of
Merlin, but doesnt trust him. How should Merlin convince the
intelligent but impatient King that a string x belongs to a given
language L? If L ∈ NP, Merlin will be able to present a witness
which Arthur can check in polynomial time.” From [Bab85]

In the above, Arthur is an ordinary player with the ability of making coin
tosses (i.e. randomization), and Merlin is a powerful player capable of opti-
mizing his winning chances at every move. The two players alternate moves,
the history of the game is known to both, and after k moves there is a deter-
ministic polynomial-time Turing Machine that reads the history and decides
who wins. We state the formal definition:

Definition 2.1 (Arthur-Merlin Games). An Arthur-Merlin Game is a pair
of interactive Turing Machines A and M, and a predicate ρ such that:
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• On an input x, with length |x| = n, exactly q(n) messages of length
m(n) each are exchanged, where q,m ∈ poly(n).

• Arthur plays first, and at iteration 1 ≤ i ≤ q(n) chooses uniformly at
random a string ri, where |ri| = m(n).

• Merlin’s reply in the ith iteration, denoted yi, is a function of all pre-
vious choices of Arthur and x. That is: yi = M(x, r1, r2, . . . , ri). In
other words, M is the strategy of Merlin.

• For every Turing Machine M′, a conversation between A and M′ on
input x is a string:

r1y1r2y2 · · · rq(n)yq(n)

where for every 1 ≤ i ≤ q(n): yi = M′(x, r1r2 · · · ri)

• The predicate ρ maps x and a conversation r1y1r2y2 · · · rq(n)yq(n) to
{accept, reject} in polynomial time, and it is called value-of-the game
predicate.

Now we need to determine how to test the membership for a language L
using an Arthur-Merlin game: Firstly, we define the set of all conversa-
tions between Arthur and Merlin as CONVM

x . Obviously, we have that
|CONVM

x | = 2q(n)m(n). We also define the set of accepting conversations

ACCρ,Mx as:{
r1 · · · rq(n)|∃(y1 · · · yq(n)) : (r1y1 · · · rq(n)yq(n)) ∈ CONVM

x ∧ ρ(r1y1 · · · rq(n)yq(n)) = accept
}

Intuitively, ACCρ,Mx is the set of all random choices leading Arthur to accept
the input x when interacting with Merlin, and it depends only on Merlin and
the pridecate ρ, given that Arthur follows the protocol. The probability that
Arthur accepts x is:

Pr[Arthur accepts x] =
|ACCρ,Mx |
|CONVM

x |

Definition 2.2. A language L is in AM[k] if there exists a k-move Arthur-
Merlin protocol such that for every x ∈ Σ∗ :

• If x ∈ L, there exists a strategy for Merlin such that :

Pr[Arthur accepts x] ≥ 2

3

• If x /∈ L, for every strategy for Merlin we have:

Pr[Arthur accepts x] ≤ 1

3

The first is known as completeness condition, and the second as sound-
ness condition.

The class MA[k] is defined by similar way, but Merlin plays first.
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2.2 Quantifier Characterizations

We denote by AM = AM[2], and by MA = MA[2]. Following [Bab85], we
consider as Merlin an NP machine, and as Athur a BPP machine. So, we
can interpret Arthur-Merlin games in terms of quantifiers:

AM = (∃+∃/∃+∀) = BP ·NP

MA = (∃∃+/∀∃+) = N ·BPP

where BP· and N· is the bounded-probabilistic and the nondeterministic
quantifiers respectively (see Appendix A for definitions). It is well known
that we can obtain perfect completeness for interactive proof systems, by
simulating the given protocol by another. This cannot be obtained in the
soundness condition, because this would be equal to a deterministic verifier,
so by definition that class collapses to NP. We prove perfect completeness
for Arthur-Merlin games in the following theorem:

Theorem 2.1. i. AM = (∃+∃/∃+∀) = (∀∃/∃+∀)

ii. MA = (∃∃+/∀∃+) = (∃∀/∀∃+)

iii. In general, for even k and AM[k] = (Q1/Q2):

• AM[k + 1] = (Q1∃+/Q2∃+) = (Q1∀/Q2∃+)

• AM[k + 2] = (Q1∃+∃/Q2∃+∀) = (Q1∀∃/Q2∃+∀)

Proof: (i) AM = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) (by Corollary 1.4)
⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) (by quantifier contraction).
The other direction is trivial: (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

(ii) MA = (∃∃+/∀∃+) = (∃∃+∀/∀∀∃+) (by Corollary 1.4)
⊆ (∃∃∀/∀∀∃+) = (∃∀/∀∃+) (by quantifier contraction).
The other direction is trivial: (∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.

(iii) AMA = (∃+∃∃+/∃+∀∃+) = (∀∃∃+/∃+∀∃+) (by (ii))
= (∀∃∃+∀/∃+∀∀∃+) (by Corollary 1.4)
= (∀∃∀/∃+∀∃+) (by quantifier contraction)
and so on for AM[k].

We also prove the following useful lemma:

Lemma 2.2. (∃∀/∀∃+) ⊆ (∀∃/∃+∀)

Proof: Let L ∈ (∃∀/∀∃+). Then,
x /∈ L⇒ ∀y ∃+z ¬P (x, y, z)
⇒ ∃+C ∀y ∃z ∈ C ¬P (x, y, z) (by the Swapping Lemma 1.1i)
⇒ ∃C ∀y ∃z ∈ C ¬P (x, y, z)
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⇒ ∀y ∃z ¬P (x, y, z)
⇒ x /∈ L
which means that all logical implications are indeed equivalences, and the
second and third lines emply that L ∈ (∀∃/∃+∀).

From the above theorem and lemma, we have the following immediate
inclusions:

Corollary 2.3. MA ⊆ AM

Corollary 2.4. AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩Πp
2

Lemma 2.2 can be generalized as follows:

Corollary 2.5.

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4)

If we consider the complexity classes AM[k] (the languages that have
Arthur-Merlin proof systems of a bounded number of rounds), they form an
hierarchy :

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Unlike the Polynomial Hierarchy, in which we believe the inclusions are
proper, Arthur-Merlin Hierarchy collapses to the second level (which is why
we usually denote as AM the class AM[2]):

Theorem 2.6. For constants k ≥ 2, AM[k] = AM[2].

Proof. We show as special case the inclusion MAM ⊆ AM:
MAM = (∃∃+∃/∀∃+∀) ⊆ (∃∃+∀∃/∀∀∃+∀) (by the BPP Theorem 1.2)
⊆ (∃∀∃/∀∃+∀) (by quantifier contraction)
⊆ (∀∃∃/∃+∀∀) (by Lemma 2.2)
⊆ (∀∃/∃+∀) = AM (by quantifier contraction)

We give an alternative proof of a result which provides us with strong
evidence that coNP * AM, originally proved in [BHZ87]:

Theorem 2.7. If coNP ⊆ AM, then:

i. PH collapses at the second level, and

ii. PH = AM.

Proof: Since coNP ⊆ AM, we have that (∀/∃) ⊆ (∀∃/∃+∀) as assumption.
Then:

Σp
2 = (∃∀/∀∃) ⊆ (∃∀∃/∀∃+∀) ⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) = AM ⊆ (∀∃/∃∀) = Πp

2

The first inclusion holds from our hypothesis, the second by Lemma 2.2.
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The following Hasse diagrams captures the inclusions between the most
important complexity classes we’ve seen so far, the former in classic and the
latter in quantifier notation:

NP // MA //

%%JJJJJJJJJJ Σp
2

AM

��......................

P //

EE����������������

��3333333333333333 BPP

CC�����������������

��88888888888888888

coAM

HH����������������������

coNP // coMA //

99tttttttttt
Πp

2

(∃/∀) // (∃∀/∀∃+) //

&&MMMMMMMMMMM
(∃∀/∀∃)

(∀∃/∃+∀)

��1111111111111111111111111

(∀/∀) //

CC�����������������

��77777777777777777
(∃+/∃+)

AA������������������

��;;;;;;;;;;;;;;;;;;

(∃+∀/∀∃)

FF


























(∀/∃) // (∀∃+/∃∀) //

88qqqqqqqqqqq
(∀∃/∃∀)
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Class Definition Notation

P x ∈ L⇒ R(x) x /∈ L⇒ ¬R(x) (∀/∀)
NP x ∈ L⇒ ∃y R(x, y) x /∈ L⇒ ∀y ¬R(x, y) (∃/∀)

coNP x ∈ L⇒ ∀y R(x, y) x /∈ L⇒ ∃y ¬R(x, y) (∀/∃)
Σp

2 x ∈ L⇒ ∃y∀z R(x, y, z) x /∈ L⇒ ∀y∃z ¬R(x, y, z) (∃∀/∀∃)
Πp

2 x ∈ L⇒ ∀y∃z R(x, y, z) x /∈ L⇒ ∃y∀z ¬R(x, y, z) (∀∃/∃∀)
RP x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∀y ¬R(x, y) (∃+/∀)

coRP x ∈ L⇒ ∀y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∀/∃+)

BPP x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃+/∃+)

Alternative characterization [ZH86]: (∃+∀/∀∃+)

Alternative characterization [ZH86]: (∀∃+/∃+∀)
PP x ∈ L⇒ ∃1/2y R(x, y) x /∈ L⇒ ∃1/2y ¬R(x, y) (∃1/2/∃1/2)

AM x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃+∃/∃+∀)
Alternative characterization [ZF87]: (∀∃/∃+∀)

MA x ∈ L⇒ ∃+y R(x, y) x /∈ L⇒ ∃+y ¬R(x, y) (∃∃+/∀∃+)

Alternative characterization [ZF87]: (∃∀/∀∃+)

Table 1: Quantifier Notation of the usual Complexity Classes
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A Operators on Complexity Classes

Definition A.1 (Operators on Complexity Classes). Let C be an arbitrary
complexity class. We define:

1. The complement operator coC:
A language L ∈ coC if there exists an L′ ∈ C such that:

• If x ∈ L⇒ x /∈ L′

• If x /∈ L⇒ x ∈ L′

2. The nondeterministic operator N :
A language L ∈ N·C if there exists an L′ ∈ C such that:

• If x ∈ L⇒ ∃y RL′(x, y)

• If x /∈ L⇒ ∀y ¬RL′(x, y)

3. The intersection operator ∆:
A language L ∈ ∆·C if L ∈ C and also L ∈ C, that is if L ∈ C∩ coC.

4. The bounded-probabilistic operator BP:
A language L ∈ BP·C if there exists an L′ ∈ C such that:

• If x ∈ L⇒ ∃+y RL′(x, y)

• If x /∈ L⇒ ∃+y ¬RL′(x, y)

5. The probabilistic operator P:
A language L ∈ P·C if there exists an L′ ∈ C such that:

• If x ∈ L⇒ ∃1/2y RL′(x, y)

• If x /∈ L⇒ ∃1/2y ¬RL′(x, y)

6. The probabilistic operator R:
A language L ∈ R·C if there exists an L′ ∈ C such that:

• If x ∈ L⇒ ∃+y RL′(x, y)

• If x /∈ L⇒ ∀y ¬RL′(x, y)

In the above definitions, |y| ≤ poly(|x|), and RL is a polynomial-time
computable predicate responding to the membership question for L. That
is, RL(x) = 1 iff x ∈ L and RL(x, y) = 1 iff x; y ∈ L. Note that the above
operations require that C is closed under padding.
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