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Function Problems

L ∈ NP

There is a polynomial-time decidable, polynomially balanced relation RL

such that for all strings x : there is a string y with RL(x , y) if and only if
x ∈ L.

FL

Given x , find a string y such that RL(x , y) if such a string exists; if no
such string exists, return “no”.
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Function Problems

Reductions

Functions Problems: A ≤ B

I if x is an instance of A, then R(x) is an instance of B.

I if there exists a solution for A with input x , then there exists a
solution for B with input R(x).

I if z is a solution for R(x), then S(z) is a solution for x .

I R, S are computable in logarithmic space.

FP = FNP ⇐⇒ P = NP
I SAT can be solved in polynomial time if and only if FSAT can be

solved in polynomial time

I FSAT is FNP-complete
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Total Search Problems

Function Problem
1 Decision Problem: Decide if a solution exists (“yes”, “no”)

2 Search Problem: if “yes”, find a solution

Total Search Problem

A “Total” FNP (TFNP) problem is an FNP problem where a solution is
guaranteed to exist.
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Total Search Problems

FP ⊆ TFNP ⊆ FNP

I FP = TFNP ⇒ P = NP ∩ coNP

I TFNP = FNP ⇒ NP = coNP

Interesting to define classes of problems where solution is guaranteed to
exist by a non-constructive proof.

Plan
1 Represent possible configurations with nodes.

2 Find a relation between nodes (Edges). The relation must be chosen
so that the solutions are nodes with a special property (The
non-consturctive proof helps!)
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PLS

Figure: FIND SINK

Argument in Proof of Existence

Every finite directed acyclic graph has a sink.
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PLS

Stable configuration for neural networks

Neural Network:

I G = (V ,E )

I S : V → {−1, 1} (Nodes)

I Stable Configuration: (∀i ∈ V )S(i) ·
∑

{i ,j}∈E
S(j)wij ≥ 0

Define:

I Cost: c(x , S) =
∑

{i ,j}∈E
S(i)S(j)wij

I Neigborhood (Edges):

S ′ ∈ N(x , S)⇐⇒ (S ′ ∈ FLIP(S) ∧ (c(x ,S ′) > c(x ,S))
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PLS

Stable Configuration for neural networks ≤ FIND SINK

Sinks ⊆ Solutions: If node i is flipped and S(i) ·
∑

{i ,j}∈E
S(j)wij = −δ < 0,

then c(x ,S ′) = c(x ,S) + 2δ.
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PLS

PLS-complete Problems

I TSP, under the Kernighan-Lin neighborhood.

I MAX-CUT, under the flip neighborhood.

I Stable configuration for neural networks.

Markos Epitropou (NTUA) FNP & TFNP November 29, 2012 9 / 17



PPA

Figure: ODD DEGREE NODE

Argument in Proof of Existence

Any finite graph has an even number of odd-degree nodes OR All graphs
of degree two or less have an even number of leaves.
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PPA

SMITH

Given a graph G with odd degrees, and a Hamilton cycle, find another one.

I Nodes: Hamilton Paths without edge {1, 2}.
I Edges: Add an edge to the endpoint ( 6= 1) and break cycle in a

unique way.
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Sperner’s Lemma
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Sperner’s Lemma
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PPAD

Figure: END OF THE LINE

Argument in Proof of Existence

If a finite directed graph has an unbalanced node (a vertex with different
in-degree and out-degree), then it has another one.
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PPAD-complete Problems

I 3D SPERNER

I BROUWER

I NASH
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Hierarchy

Figure: Search Classes
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