
The classes L and NL,
 Savitch’s, Immerman-Szelepscényi,

Reingold’s Theorems

Christos Moyzes
MPLA 2012-2013

Quick Reminders / Definitions

Consider a Turing Machine with 3 tapes

Input

Work

Output

A problem is in SPACE(s(n)) iff a TM uses s(n) space for work and output tapes

A problem is in NSPACE(s(n)) iff a NTM uses s(n) space for work and output tapes

 L = SPACE (O(logn)) NL = NSPACE(O(logn))

n = the length of input x

Theorem If a machine halts, and uses space
 s(n) ≥ logn, it runs in time 2O(s(n))

• configuration : the specific state, position of
header(s), contents of tape(s)

• So number of possible configurations is
states (finite) * length of input x * possible (binary)
strings of length s(n) hence
O(1)*n*2s(n) = 2O(s(n))+logn = 2O(s(n))

• It takes 1 step to visit every state and that is only
once (otherwise machine would not halt) so
#configurations = time = 2O(s(n))

• It still holds #configurations = 2O(s(n)) = 2O(logn) = nO(1)

• Consider directed graph with
vertices = configurations
edges = allowable transitions

• Question is : Starting from original state is there an
acceptance state ?

• We run algorithm for REACHABILITY for each such
acceptance “vertex”

• There are polynomially many destination vertices
and REACHABILITY is solved polynomially so
we are still in P.

 Theorem NL ⊆ P

Configuration Graph

What about reductions?

• For P,NP we reduce in polynomial time
Should we do the same for L,NL ? NO because NL ⊆ P
We will be reducing problems in log space

• Suppose Mf computes f
Problem: If Μf computes f and output |f(x)|> logn
how is Mf working in log space?
Solution: We will ask Μf for only 1 bit at a time.

Definition : A is log space reducible to B, A ≤log B
iff  a function f implicitly computable in log space
such that x  A  f(x)  B

• MB wants to read bit i of f(x) and “asks” Μf

• Mf computes the bit in log space and writes
 it on output tape.

• repeat

 Theorem If A ≤log B and B  L  A  L

Definition
A is NL-Hard if  B  NL, B ≤log A
A is NL-Complete iff A is NL-Hard & A  NL

The P-NP analog

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Reachability  NL

• For every vertex, starting at s, non-deterministically
choose neighbor to go to.

• If you reach t in at most n steps then YES

• If you don’t reach t in n steps then NO

• We only need to remember the index of the vertex
and the number of steps so far. They are numbers at
most n, so 2*logn space to represent, hence O(logn)

 REACHABILITY(s,t) is NL-Complete

Reachability is NL-hard

• Let ANL ,ΜA the machine that decides it, x input of
ΜA. We compute (implicitly) the configuration graph
of ΜA(x).

• We add a vertex t and add edges from all accepting
vertexes to t.

• ΜA(x) accepts  REACHABILITY(s,t) returns YES

• The reduction f is in log space:
f need only answer for two vertices at a time so
O(logn) space for them.
Also a sub-routine than can check if transition is
allowable is relatively easy.

• Let ANSPACE(f(n)). The configuration graph G(V,E)
has 2O(f(n)) vertices.

• Deterministic recursive algorithm:
Reach(s, t, 1): (s, t)  E
Reach(s, t, k): wV\{s, t} compute
Reach(s, w,[k/2]) and Reach(w, t,[k/2])
If they both accept, accept. Else, reject.

• Space: S(1) = O(f(n)) to remember what edge we’re
checking
S(k) = O(f(n)) to remember w + S(k/2)
 S(k) = O(f(n))*logk = O(f(n))*O(f(n)) = O(f2(n))

Theorem (Savitch) NSPACE(f(n)) ⊆ SPACE(f2(n))

• This is still the one with the best known space bound.

• Time: T(1) = O(|V|+|E|)
T(k) = O(1) + n*2*T(k/2)
This solves to T(k) = nO(logk) (superpolynomial)

• No known algorithm achieves polynomial log-space
and polynomial time simultaneously

Corollaries:

• REACHABILITY  SPACE(log2n)

• NPSPACE = PSPACE

• Non-determinism is less powerful with respect to
space than to time.

Certificate definition of NL (alternative

Based on NL=coNL

• REACHABILITY’ is coNL-complete

• We need to show REACHABILITY’  NL
then we have coNL ⊆ NL

• Similarly REACHABILITY’  NL 
 REACHABILITY  co NL
 NL ⊆ coNL

 Theorem (Immerman–Szelepcsényi)
 NSPACE = coNSPACE

Idea for REACHABILITY’  NL

• Algorithm 1
input: G = (V, E), s, t, r
output: YES if it discovers that t is not reachable
from s, and NO otherwise
assumption: there are exactly r distinct vertices
reachable from s

• Algorithm 2 (find r)
input: G = (V,E), s, k, rk-1
output: the number of vertices reachable from s in at
most k steps (including s in this count)
assumption: rk-1 is the exact number of vertices
reachable from s in at most k - 1 steps

We can copy the certificate definition for NP.

Problem : If certificate p(x) is polynomially long,
log space work tape can’t hold it.

Solution : We allow extra “read once” input tape

Definition 2 A ∈ NL iff there exists log space TM M
such that x ∈ A ⇔ ∃u |u|< p(|x|) & M(x, u) = YES

• u is on “read once” input tape

• p polynomial

 Certificate Definition of NL

Let N be the NTM of Definition 1

• Definition 1  Definition 2
N makes polynomially many guesses
These guesses form certificate u
M simulates N and reads guess from tape u
One u exists that returns YES.

• Definition 2  Definition 1
N chooses non-deterministic next bit of u and
simulates M.
Only one bit of u at time (can’t store whole u)

Definition SL is the class of problems log-space
reducible to undirected REACHABILITY
(or can be solved by symmetric NTM)

Theorem (Reingold - 2004) SL = L

Obvious Consequence SL-complete problems can be
used for the design of log space, polylog space,
log reductions.

 The class SL

SL- complete problems

• USTCON
• Simulation of symmetric Turing machines: does an STM accept a given

input in a certain space, given in unary?
• Vertex-disjoint paths: are there k paths between two vertices, sharing

vertices only at the endpoints? (a generalization of USTCON, equivalent to
asking whether a graph is k-edge-connected)

• Is a given graph a bipartite graph, or equivalently, does it have a graph
coloring using 2 colors?

• Do two undirected graphs have the same number of connected
components?

• Does a graph have an even number of connected components?
• Given a graph, is there a cycle containing a given edge?
• Do the spanning forests of two graphs have the same number of edges?
• Given a graph where all its edges have distinct weights, is a given edge in

the minimum weight spanning forest?
• Exclusive or 2-satisfiability: given a formula requiring that xi xor xj hold for

a number of pairs of variables (xi,xj), is there an assignment to the
variables that makes it true?

Sources

• Lecture Notes on Computational Complexity, Luca
Trevisan

• Computational Complexity: A Modern Approach ,
Sanjeev Arora and Boaz Barak

• Computational Complexity, Christos Papadimitriou

• http://en.wikipedia.org/wiki/SL_(complexity),
Wikipedia

http://en.wikipedia.org/wiki/SL_(complexity)
http://en.wikipedia.org/wiki/SL_(complexity)
http://en.wikipedia.org/wiki/SL_(complexity)

