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Quick Reminders / Definitions

Consider a Turing Machine with 3 tapes

Input ]
Work ]

Output ]

A problem is in SPACE(s(n)) iff a TM uses s(n) space for work and output tapes
A problem is in NSPACE(s(n)) iff a NTM uses s(n) space for work and output tapes

L = SPACE ( O(logn) ) NL = NSPACE( O(logn) )

n = the length of input x



Theorem If a machine halts, and uses space

s(n) = logn, it runs in time 20(s()

e configuration : the specific state, position of
header(s), contents of tape(s)

* So number of possible configurations is
states (finite) * length of input x * possible (binary)

strings of length s(n) hence
0(1)*n*25(n) = 20(s(n))+logn = 90O(s(n))

* |t takes 1 step to visit every state and that is only
once (otherwise machine would not halt) so
#configurations = time = 20((n)



Theorem NLC P

It still holds #configurations = 20(s(n)) = 20(logn) = KO(1)

Consider directed graph with
vertices = configurations ~ Configuration Graph
edges = allowable transitions |

Question is : Starting from original state is there an
acceptance state ?

We run algorithm for REACHABILITY for each such
acceptance “vertex”

There are polynomially many destination vertices
and REACHABILITY is solved polynomially so
we are still in P.



What about reductions?

 For PNP we reduce in polynomial time
Should we do the same for L,NL ? NO because NLS P
We will be reducing problems in log space

* Suppose M; computes f

Problem: If M; computes f and output |f(x)|> logn
how is M working in log space?

Solution: We will ask M, for only 1 bit at a time.

Definition : A is log space reducibleto B, A<, B

log

iff 4 a function f implicitly computable in log space
suchthat xe A < f(x) € B




BandBel = Aecl

Theorem If A <

log

* M; wants to read bit i of f(x) and “asks” M;

* M; computes the bit in log space and writes
It on output tape.

* repeat

Definition

Ais NL-Hard if V B € NL, B 5, A
A is NL-Complete iff Ais NL-Hard & A € NL




The P-NP analog

A
NP-Hard NP-Hard
NP-Complete
P= NP =
NP-Complete
P = NP

LS NLES P € NP € PSPACE € EXP



REACHABILITY(s,t) is NL-Complete

Reachability € NL

For every vertex, starting at s, non-deterministically
choose neighbor to go to.

If you reach t in at most n steps then YES
If you don’t reach t in n steps then NO

We only need to remember the index of the vertex
and the number of steps so far. They are numbers at
most n, so 2*logn space to represent, hence O(logn)



Reachability is NL-hard

* Let AeNL ,M, the machine that decides it, x input of
M,. We compute (implicitly) the configuration graph
of M,(x).

 We add a vertex t and add edges from all accepting
vertexes to t.

* M,(x) accepts < REACHABILITY(s,t) returns YES

 The reduction fis in log space:
f need only answer for two vertices at a time so
O(logn) space for them.
Also a sub-routine than can check if transition is
allowable is relatively easy.



Theorem (Savitch) NSPACE(f(n)) € SPACE(f%(n))

 Let AeNSPACE(f(n)). The configuration graph G(V,E)
has 2°(fn) vertices.

* Deterministic recursive algorithm:
Reach(s, t, 1): (s, t) € E
Reach(s, t, k): YweV\{s, t} compute
Reach(s, w,[k/2]) and Reach(w, t,[k/2])
If they both accept, accept. Else, reject.

e Space: S(1) = O(f(n)) to remember what edge we’re
checking
S(k) = O(f(n)) to remember w + S(k/2)
= S(k) = O(f(n))*logk = O(f(n))*O(f(n)) = O(f*(n))



* This is still the one with the best known space bound.
e Time: T(1)=0( |V|+]|E])

T(k) = O(1) + n*2*T(k/2)

This solves to T(k) = n®logk) (superpolynomial)

* No known algorithm achieves polynomial log-space
and polynomial time simultaneously

Corollaries:
 REACHABILITY € SPACE(log?n)
e NPSPACE = PSPACE

* Non-determinism is less powerful with respect to
space than to time.




NSPACE = coNSPACE

Based on NL=coNL

« REACHABILITY’ is coNL-complete

e We need to show REACHABILITY’ € NL
then we have coNL € NL

e Similarly REACHABILITY’ € NL =
— REACHABILITY € co NL
—> NL € coNL



ldea for REACHABILITY’ € NL

e Algorithm 1
input: G=(V,E), s, t, r
output: YES if it discovers that t is not reachable
from s, and NO otherwise

assumption: there are exactly r distinct vertices
reachable from s

e Algorithm 2 (find r)
input: G =(V,E), s, k, r 4
output: the number of vertices reachable from s in at
most k steps (including s in this count)
assumption: r, , is the exact number of vertices
reachable from s in at most k - 1 steps




Certificate Definition of NL

We can copy the certificate definition for NP.

Problem : If certificate p(x) is polynomially long,
log space work tape can’t hold it.

Solution : We allow extra “read once” input tape

Definition 2 A € NL iff there exists log space TM M
suchthat x€A < Ju |u|<p(|x|) & M(x, u) = YES

* uison “read once” input tape

* p polynomial



Let N be the NTM of Definition 1

e Definition 1 = Definition 2
N makes polynomially many guesses
These guesses form certificate u
M simulates N and reads guess from tape u
One u exists that returns YES.

e Definition 2 = Definition 1
N chooses non-deterministic next bit of u and
simulates M.
Only one bit of u at time (can’t store whole u)



The class SL

Definition SL is the class of problems log-space

reducible to undirected REACHABILITY
(or can be solved by symmetric NTM)

Theorem (Reingold - 2004) SL=1L

Obvious Consequence SL-complete problems can be
used for the design of log space, polylog space,
log reductions.




SL- complete problems

* USTCON

e Simulation of symmetric Turing machines: does an STM accept a given
input in a certain space, given in unary?

* Vertex-disjoint paths: are there k paths between two vertices, sharing
vertices only at the endpoints? (a generalization of USTCON, equivalent to
asking whether a graph is k-edge-connected)

* |Isagiven graph a bipartite graph, or equivalently, does it have a graph
coloring using 2 colors?

* Do two undirected graphs have the same number of connected
components?

* Does a graph have an even number of connected components?
* Given a graph, is there a cycle containing a given edge?
* Do the spanning forests of two graphs have the same number of edges?

* Given a graph where all its edges have distinct weights, is a given edge in
the minimum weight spanning forest?

e Exclusive or 2- satisfiability given a formula requiring that x; xor x; hold for
a number of pairs of variables (x;x;), is there an a55|gnment to the
variables that makes it true?
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