
Approximation & Complexity

Ioannis Psarros

National & Kapodistrian University of Athens

April 11, 2014

Ioannis Psarros Approximation & Complexity April 11, 2014 1 / 24



Definitions

.
Definition
..

.

. ..

.

.

Let A an optimization problem.

For each instance x we have a set of feasible solutions F (x).

For each s ∈ F (x) we have a positive integer cost c(s).

The optimum cost is defined as OPT(x) = mins∈F (x) c(s) (or
maxs∈F (x) c(s)).
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Definitions

.
Definition (Minimization)
..

.

. ..

.

.

Let M an algorithm which returns M(x) ∈ F (x). M is an ρ-approximation
algorithm, where ρ > 1, if for all x we have,

c(M(x))

OPT(x)
≤ ρ.

.
Definition (Maximization)
..

.

. ..

.

.

Let M an algorithm which returns M(x) ∈ F (x). M is an ρ-approximation
algorithm, where 0 < ρ < 1, if for all x we have,

c(M(x))

OPT(x)
≥ ρ.
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MAXSAT

.
Definition (MAXSAT)
..

.

. ..

.

.

Given a set of m clauses in n boolean variables, find the truth assignment
that satisfies the most.

Consider the following randomized algorithm:

Set each Boolean variable to be true independently with probability
1/2.

Return the resulting truth assignment.
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MAXSAT

Consider a clause ci with ki literals. The probability p(ci ) that this clause
is satisfied is 1− 1

2ki
.

Hence,

E(N) =
m∑
i=1

p(ci ) ≥
1

2
m ≥ 1

2
OPT

where N denotes the number of satisfied clauses.
Can we do it deterministically?
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MAXSAT

The following holds:

E(N) =
1

2
(E(N|x1 = true) + E(N|x1 = false)).

So, deterministically assign to the next variable the value that maximizes
the expectation.
.
Theorem
..

.

. ..

.

.

There exists a polynomial time deterministic algorithm with approximation
factor 1/2 for the MAXSAT problem.

The above is a general method for derandomizing known as the method of
conditional expectation.
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L-reductions

Ordinary reductions are inadequate for studying approximability.
.
Definition
..

.

. ..

.

.

Let A and B two optimization problems. An L-reduction from A to B is a
pair of functions R and S, both computed in logarithmic space, with
following two additional properties:

If x an instance of A and R(x) an instance of B then:

OPT(R(x)) ≤ α ·OPT(x),

where α > 0.

If s feasible solution of R(x) then S(s) is a feasible solution of x s.t.

|OPT(x)− c(S(s))| ≤ β · |OPT(R(x))− c(s)|,

where β > 0.
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Properties

.
Proposition
..

.

. ..

.

.

If (R, S) is an L-reduction from problem A to problem B and (R ′,S ′) is an
L-reduction from problem B to problem C, then their composition
(R · R ′,S ′ · S) is an L-reduction from A to C.

.
Proposition
..

.

. ..

.

.

If there is an L-reduction (R, S) from A to B with constants α, β and
there is a polynomial-time (1 + ε)-approximation algorithm for B, then
there is a polynomial-time (1± αβε)-approximation algorithm for A.

Given an instance x of A apply the (1 + ε)-approx algorithm to the
instance R(x) of B. We obtain solution s and we return S(s).
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The class SNP

Fagin’s theorem states that all graph theoretic properties in NP can be
expressed in existential second-order logic.
.
Definition
..

.

. ..

.

.

SNP Strict NP or SNP consists of all properties expressible as

∃S∀x1∀x2 · · · ∀xkφ(S ,P , x1, · · · , xk),

where φ is a quantifier-free First-Order expression and P predicates (the
input).

But SNP contains decision problems..
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The class MAXSNP

.
Definition
..

.

. ..

.

.

Define MAXSNP0 to be the class of optimization problems expressed as

max
S

|{(x1, · · · , xk)} ∈ Uk : φ(P1, · · ·Pm, S , x1, · · · , xk)}|,

where U is a finite universe and P1, · · · ,Pm, S predicates.

.
Definition
..

.

. ..

.

.

MAXSNP is the class of optimization problems that are L-reducible to a
problem in MAXSNP0.
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The class MAXSNP

.
Example
..

.

. ..

.

.

MAX-CUT is in MAXSNP0 and therefore in MAXSNP. It can be written
as follows:

max
S

|{(x , y) : ((G (x , y) ∨ G (y , x)) ∧ S(x) ∧ ¬S(y))}|.
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The class MAXSNP
.
Example
..

.

. ..

.

.

MAX2SAT is in MAXSNP0 and therefore in MAXSNP. Let P0, P1, P2

predicates s.t.:

P0(x , y) ⇔ x ∨ y is a clause.

P1(x , y) ⇔ ¬x ∨ y is a clause.

P2(x , y) ⇔ ¬x ∨ ¬y is a clause.

MAX2SAT can be written as

max
S

|{(x , y) : φ(P0,P1,P2, S , x , y)}|,

where φ is the following expression:

(P0(x , y) ∧ (S(x) ∨ S(y))) ∨ (P1(x , y) ∧ (¬S(x) ∨ S(y)))∨

∨(P2(x , y) ∧ (¬S(x) ∨ ¬S(y))).
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MAXSNP-Completeness

.
Definition
..

.

. ..

.

.

A problem in MAXSNP is MAXSNP-complete if all problems in MAXSNP
L-reduce to it.

.
Theorem
..
.
. ..

.

.

MAX3SAT is MAXSNP-complete.

.
Proof.
..

.

. ..

.

.

It suffices to show that all problems in MAXSNP0 can be L-reduced to
MAX3SAT. Consider a problem A ∈ MAXSNP0 which is defined by the
expression:

max
S

|{(x1, · · · , xk) : φ}|.
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MAXSNP-Completeness

.
Proof(Cont.)
..

.

. ..

.

.

For each k-tuple y ∈ Uk substitute for (x1, · · · , xk) in φ and obtain
φy .

φy contains atomic expressions that uses Pi and S . Evaluate atomic
expressions that use Pi .

φy now consists of atomic expressions of the form S(yi1 , · · · , yir ).
k is independent of the input =⇒ φy can be transformed into an
equivalent 3CNF expression φ′

y of constant size.
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MAXSNP-Completeness

.
Proof(Cont.)
..

.

. ..

.

.

Each satisfiable 3CNF expression φ′
y consists of at most c clauses, where c

depends on φ. Hence,
OPT(R(x)) ≤ c ·m,

where m the number of satisfiable expressions φy .
We can also see that

OPT(x) ≥ 2−km.

Hence,
OPT(x) ≤ 2kc ·OPT(x).

The first condition is satisfied for α = 2kc .
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MAXSNP-Completeness

.
Proof(Cont.)
..

.

. ..

.

.

Second condition is also satisfied for β = 1. We can lift the cost function
for MAX3SAT s.t. the number of unsatisfied clauses equals the number of
unsatisfied expressions φy . In other words,

|OPT(x)− c(S(s))| ≤ |OPT(R(x))− c(s)|.
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PTAS-FPTAS

.
Definition
..

.

. ..

.

.

An optimization problem has a polynomial time approximation scheme
(PTAS) if there exists (1± ε)-approximation algorithm for any ε > 0 and
running time bounded by a polynomial in the size of the input.

.
Definition
..

.

. ..

.

.

An optimization problem has a fully polynomial time approximation scheme
(FPTAS) if there exists (1± ε)-approximation algorithm for any ε > 0 and
running time bounded by a polynomial in the size of the input and 1/ε.

Essentialy, FPTAS is the best we can hope for an NP-hard optimization
problem.
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FPTAS for the knapshack problem

The knapshack problem admits a pseudo-polynomial algorithm with
running time O(n2P) where P is the profit of the most valuable object.
What if P is bounded by a polynomial in n?
An FPTAS for the knapshack problem:

Given ε > 0, let K = εP
n .

For each object ai define profit profit ′(ai ) = bprofit(ai )K c.
Using the dynamic programming algorithm, find the best solution S ′

for the new set of profits.
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FPTAS for the knapshack problem

.
Lemma
..

.

. ..

.

.

Let A the output of our algorithm. Then,

profit(A) ≥ (1− ε)OPT.

.
Proof
..

.

. ..

.

.

Let O the set that gives the optimum solution.

profit(O)− K · profit ′(O) ≤ nK

profit(S ′) ≥ K · profit ′(O) ≥ profit(O)− nK = OPT − εP ≥ (1− ε)OPT

The running time is O(n2bP
K c) = O(n

3

ε ).
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FPRAS

.
Definition
..

.

. ..

.

.

Consider a problem in P whose counting version f is #P-complete. An
algorithm A is a fully polynomial randomized approximation scheme
(FPRAS) if for each instance x ∈ Σ∗ and error parameter ε > 0,

Pr [|A(x)− f (x)| ≤ εf (x)] ≥ 3

4

and the running time of A is polynomial in |x | and 1/ε.
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Counting DNF Solutions

.
Problem
..

.

. ..

.

.

Let f = C1 ∨ C2 ∨ · · · ∨ Cm be a formula in disjunctive normal form on n
Boolean variables x1, · · · , xn. Compute #f , the number of satisfying truth
assignments of f .

Let Si be the set of truth assignments that satisfy Ci . Clearly |Si | = 2n−ri

where ri the number of literals in Ci .Let M be the multiset union of all
Si .Let c(τ) be the number of clauses that τ satisfies. Pick a satisfying
truth assignment, τ , for f with probability c(τ)/|M| and define
X (τ) = |M|/c(τ).
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Counting DNF Solutions

Pick at random a satisfying truth assignment, τ , for f with probability
c(τ)/|M|:

First pick a clause so that the probability of picking clause Ci is
|Si |/|M|.
Next, among the truth assignments satisfying the picked clause, pick
one at random.

Pr [τ is picked] =
∑

i :τ satisfies Ci

|Si |
|M|

· 1

|Si |
=

c(τ)

|M|

E[X ] =
∑
τ

Pr [τ is picked] · X (τ) =
∑

τ satisfies f

c(τ)

|M|
· |M|
c(τ)

= #f .
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Counting DNF Solutions

Luckily,
σ(X )

E[X ]
≤ m − 1.

Sampling X polynomially many times (in n and 1/ε) and simply
outputting the mean leads to an FPRAS for #f .
In particular, if we set k = 4(m − 1)2/ε2, the following holds (by
Chebyshev’s inequality)

Pr [|Xk − E[Xk ]| ≥ εE[Xk ]] ≤ (
σ(Xk)

εE[Xk ]
)2 = (

σ(X )

ε
√
kE[X ]

)2 ≤ 1

4
.
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Thank You!
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