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Definitions

Definition
Let A an optimization problem.
@ For each instance x we have a set of feasible solutions F(x).
@ For each s € F(x) we have a positive integer cost c(s).
® The optimum cost is defined as OPT(x) = minscp(, c(s) (or
maxsEF(x) C(S))'
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Definitions

Definition (Minimization)

Let M an algorithm which returns M(x) € F(x). M is an p-approximation
algorithm, where p > 1, if for all x we have,

(M(x)) _

OPT(x) =/

Definition (Maximization)

Let M an algorithm which returns M(x) € F(x). M is an p-approximation
algorithm, where 0 < p < 1, if for all x we have,

i)
OPT(x)
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MAXSAT

Definition (MAXSAT)

Given a set of m clauses in n boolean variables, find the truth assignment
that satisfies the most.

Consider the following randomized algorithm:

@ Set each Boolean variable to be true independently with probability
1/2.

@ Return the resulting truth assignment.

loannis Psarros Approximation & Complexity April 11, 2014 4 / 24



MAXSAT

Consider a clause ¢; with k; literals. The probability p(c;) that this clause
is satisfied is 1 — 2%’
Hence,

m > —OPT

N -
N~

E(V) =" ple) >
i=1

where N denotes the number of satisfied clauses.
Can we do it deterministically?
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MAXSAT

The following holds:

E(N) = %(E(N|x1 — true) + E(N|x1 — false)).

So, deterministically assign to the next variable the value that maximizes
the expectation.
Theorem

There exists a polynomial time deterministic algorithm with approximation
factor 1/2 for the MAXSAT problem.

The above is a general method for derandomizing known as the method of
conditional expectation.
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L-reductions
Ordinary reductions are inadequate for studying approximability.
Definition

Let A and B two optimization problems. An L-reduction from A to B is a

pair of functions R and S, both computed in logarithmic space, with
following two additional properties:

@ If x an instance of A and R(x) an instance of B then:

OPT(R(x)) < a- OPT(x),
where a > 0.
e If s feasible solution of R(x) then S(s) is a feasible solution of x s.t.
|OPT(x) — c(S(s))| < B [OPT(R(x)) — c(s)l,
where 3 > 0.

v
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Properties

Proposition

If (R, S) is an L-reduction from problem A to problem B and (R',S’) is an
L-reduction from problem B to problem C, then their composition
(R-R',S"-S) is an L-reduction from A to C.

Proposition

If there is an L-reduction (R,S) from A to B with constants «, 8 and
there is a polynomial-time (1 + €)-approximation algorithm for B, then
there is a polynomial-time (1 £+ a/3¢)-approximation algorithm for A.

Given an instance x of A apply the (1 + €)-approx algorithm to the
instance R(x) of B. We obtain solution s and we return S(s).
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The class SNP

Fagin's theorem states that all graph theoretic properties in NP can be
expressed in existential second-order logic.

Definition
SNP Strict NP or SNP consists of all properties expressible as

3SVx1Vx2 - - Vxud(S, Py x1, -+ 4 Xk),

where ¢ is a quantifier-free First-Order expression and P predicates (the
input).

But SNP contains decision problems..
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The class MAXSNP

Definition
Define MAXSNPy to be the class of optimization problems expressed as

msaxl{(xla"' an)} S Uk . (b(PlJ"'PITHsaxla'” ’Xk)}|a

where U is a finite universe and Py,--- , P, S predicates.

Definition
MAXSNP is the class of optimization problems that are L-reducible to a
problem in MAXSNP,.
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The class MAXSNP

Example

MAX-CUT is in MAXSNPg and therefore in MAXSNP. It can be written
as follows:

max [{(x,y) : ((G(x,y) V G(y,x)) A S(x) A=S(y))}.

loannis Psarros Approximation & Complexity April 11, 2014 11 / 24



The class MAXSNP

Example

MAX2SAT is in MAXSNPq and therefore in MAXSNP. Let Py, Py, P>
predicates s.t.:

e Py(x,y) & xVyis a clause.

@ Pi(x,y) & —x Vy is a clause.

@ Py(x,y) < —xV -y is a clause.
MAX2SAT can be written as

max |[{(x, y) : #(Po, P1, P2, 5, x, y)},
where ¢ is the following expression:
(Po(x, y) A (S(x) V S(¥))) V (Prlx, ) A (55(x) V S(¥))V
V(P2(x,y) A (=5(x) V =5(y)))-

v
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MAXSNP-Completeness

Definition
A problem in MAXSNP is MAXSNP-complete if all problems in MAXSNP
L-reduce to it. )

Theorem
MAX3SAT is MAXSNP-complete.

Proof.

It suffices to show that all problems in MAXSNPg can be L-reduced to
MAX3SAT. Consider a problem A € MAXSNPg which is defined by the
expression:

msgx|{(x1, e Xk) .
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MAXSNP-Completeness

Proof(Cont.)
o For each k-tuple y € U¥ substitute for (xi,--- ,xx) in ¢ and obtain

Py
@ ¢, contains atomic expressions that uses P; and S. Evaluate atomic
expressions that use P;.

@ ¢, now consists of atomic expressions of the form S(y;, -,y )

@ k is independent of the input = ¢, can be transformed into an
equivalent 3CNF expression ¢§, of constant size.
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MAXSNP-Completeness

Proof(Cont.)

Each satisfiable 3CNF expression qﬁg, consists of at most ¢ clauses, where ¢

depends on ¢. Hence,
OPT(R(x)) < c-m,

where m the number of satisfiable expressions ¢, .

We can also see that
OPT(x) > 2 km.

Hence,
OPT(x) < 2kc- OPT(x).

The first condition is satisfied for o = 2kc.
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MAXSNP-Completeness

Proof(Cont.)
Second condition is also satisfied for 5 = 1. We can lift the cost function
for MAX3SAT s.t. the number of unsatisfied clauses equals the number of

unsatisfied expressions ¢,. In other words,

[OPT(x) — ¢(5(s))| < [OPT(R(x)) — ¢(s)|-
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PTAS-FPTAS

Definition

An optimization problem has a polynomial time approximation scheme
(PTAS) if there exists (1 + €)-approximation algorithm for any ¢ > 0 and
running time bounded by a polynomial in the size of the input.

Definition

An optimization problem has a fully polynomial time approximation scheme
(FPTAS) if there exists (1 & €)-approximation algorithm for any ¢ > 0 and
running time bounded by a polynomial in the size of the input and 1/e.

v

Essentialy, FPTAS is the best we can hope for an NP-hard optimization
problem.
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FPTAS for the knapshack problem

The knapshack problem admits a pseudo-polynomial algorithm with
running time O(n?P) where P is the profit of the most valuable object.
What if P is bounded by a polynomial in n?

An FPTAS for the knapshack problem:

@ Givene >0, let K = %.
@ For each object a; define profit profit'(a;) = L%t(a‘”

@ Using the dynamic programming algorithm, find the best solution S’
for the new set of profits.
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FPTAS for the knapshack problem

Lemma
Let A the output of our algorithm. Then,

profit(A) > (1 — €)OPT.

Proof

Let O the set that gives the optimum solution.

profit(O) — K - profit'(0) < nK

profit(S') > K - profit’(0) > profit(O) — nK = OPT — eP > (1 — ¢)OPT

3

The running time is O(n?| £]) = O(Z).
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FPRAS

Definition
Consider a problem in P whose counting version f is #P-complete. An

algorithm A is a fully polynomial randomized approximation scheme
(FPRAS) if for each instance x € ¥* and error parameter € > 0,

Pr{|A(x) — f(x)| < ef(x)] > ?_1

and the running time of A is polynomial in |x| and 1/e.

loannis Psarros Approximation & Complexity April 11, 2014 20 / 24



Counting DNF Solutions

Problem
Let f=C VvV GV---V Cy be aformula in disjunctive normal form on n
Boolean variables xi, - - - , x,. Compute #f, the number of satisfying truth

assignments of f.

Let S; be the set of truth assignments that satisfy C;. Clearly |S;| = 2""i
where r; the number of literals in C;.Let M be the multiset union of all
Si.Let ¢(7) be the number of clauses that 7 satisfies. Pick a satisfying
truth assignment, 7 , for f with probability c¢(7)/|M| and define

X(7) = [M|/c(7).
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Counting DNF Solutions

Pick at random a satisfying truth assignment, 7, for f with probability
c(7)/|M]:
@ First pick a clause so that the probability of picking clause C; is
|5il/IM].
@ Next, among the truth assignments satisfying the picked clause, pick
one at random.

is pi |Si 1 c(r
e = 3 i1
i:7 satisfies G; !
e ni c(r M
E[X] = Z Pr[7 is picked] - X(7) = _|l(\/l|) . l(T|) — 4f.
T T satisfies f
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Counting DNF Solutions

Luckily,
a(X)
E[X]
Sampling X polynomially many times (in n and 1/¢) and simply
outputting the mean leads to an FPRAS for #f.

In particular, if we set k = 4(m — 1)?/€2, the following holds (by
Chebyshev's inequality)

<m-1.

o (X) o(X)

PrIXe B > B < (o ) = (7800

IN

1
T
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Thank You!
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