
The Butterfly,
Cube-Connected-Cycles and Benes

Networks
Michael Lampis

mlambis@softlab.ntua.gr

NTUA

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.1/16

Introduction

Hypercubes are computationally powerful.
Their drawback is that node degree increases
with the size of the network.

Butterfly, CCC and Benes networks are
variations of the hypercube with constant
degree.

All three are computationally equivalent, and
universal.

They can simulate simple hypercube
algorithms with a constant degree slowdown.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.2/16

The butterfly (i)

An r-dimensional butterfly has (r + 1)2r

nodes corresponding to pairs (w, i) where w
is an r-bit binary number and i is the level
0 ≤ i ≤ r.

Two nodes (w, i), (w′, i′) are linked iff i′ = i + 1
and w = w′ or w and w′ differ only in the i′th
bit. In total r2r+1 edges.

Butterflies with N(log N + 1) nodes can be
viewed as hypercubes with N nodes (if we
collapse the rows).

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.3/16

Example of a 3-level butterfly

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.4/16

The butterfly (ii)

Advantages: Recursive structure, unique
paths from level 0 to level r (→ diameter
O(log N)), bisection width Θ(N/ log N).

Variation: wrapped butterfly. Level 0 and r are
merged. Computationally equivalent to simple
butterfly. Useful property: symmetry under
cyclic shifts of the levels.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.5/16

The Cube-Connected-Cycles

By replacing every node of an r-dimensional
hypercube with a cycle of r nodes we get a
CCC. Nodes are labelled (w, i), where w is
the hypercube node label and i is the cycle
label.

CCCs with r2r nodes can simulate
hypercubes with 2r nodes with O(r)
slowdown.

CCCs ≡ wrapped butterflies: embeddable
with dilation 2. Diameter and bisection width
are the same.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.6/16

CCCs ≡ wrapped butterfly

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.7/16

The Benes Network

Two back to back butterflies. (2r + 1)2r nodes
in total.

Interesting property: Rearrangeable network.
Useful in the simulation of arbitrary networks.

Rearrangeability: We can connect all level-0
nodes one to one to all level-2r nodes using
node disjoint paths (true for all permutations).

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.8/16

Example of a Benes network

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.9/16

Simulation of Arbitrary networks

An N -node (wrapped) butterfly can simulate
any bounded degree N -node network with at
most O(log N) slowdown.

This result also applies to simple butterflies,
CCCs and Benes networks, since these can
all simulate each other with a constant factor
loss of efficiency.

Hence, butterflies are universal

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.10/16

Simulation - Proof sketch (i)

Lemma: Given an N -node wrapped butterfly
and a permutation π : [0 . . . N] → [0 . . . N]
there is a way of moving at most one packet
from every node i to node π(i) within 3 log N
steps without causing congestion in edges or
nodes.

Solution: Routing in 3 phases (similar to
r × 2r array). Phases 1 and 3 permute
packets in rows, using row edges. Phase 2
permutes packets in columns in at most 2r
steps (rearrangeability of Benes).

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.11/16

Simulation - Proof sketch (ii)

To simulate a step of a network of maximum
degree d we solve d packet routing problems
using the previous lemma, after mapping
each node of the network to a node of the
butterfly.

Problem: More than one packet may originate
at or be headed to the same node in the
same step (at most d).

Solution: Use bipartite edge coloring to
partition communication requests in d groups.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.12/16

Normal Hypercube Algorithms (i)

Using previous simulation O(log2 N)
slowdown.

Normal Hypercube algorithms can be
simulated with a constant slowdown.

Normal: Using only one dimension at each
step and using consecutive dimensions in
consecutive steps.

All the mesh-of-trees algorithms described in
3.1 are normal.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.13/16

Normal Hypercube Algorithms (ii)

N -node hypercube with N = r2r is embedded
to N -node CCC by mapping node
v = v1v2 . . . vr+log r to node f(v)

If k is the first dimension used by the
algorithm then set s = vk+ r

2
+1 . . . vk+ r

2
+log r

Remove the bits of s from v to form
u = vkvk+1 . . . vk+ r

2
vk+ r

2
+log r+1 . . . vk−1 (a cyclic

shift of v)

Set f(v) = (λs(u), s + 1) where λs() means s
cyclic shifts to the right

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.14/16

Normal Hypercube Algorithms (iii)

In the next step dimension k − 1 or k + 1 is
used.

If k + 1 is used, shift processes from nodes
(w, i) to nodes (w, i + 1)

Fine until we use a dimension outside of
[k − r

2
+ 1, k + r

2
] (different s). Produce a new

mapping - only happens once in every r

2
steps

and costs at most O(r).

Total time (if T is hypercube time):
2T + b2T

r
O(r)c = O(T).

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.15/16

Containment and Simulation Results

r-dimensional wrapped butterflies and
r-dimensional CCCs are Hamiltonian for r ≥ 2

Therefore N -node linear arrays can be
simulated by N -node wrapped butterflies or
CCCs without slowdown.

Two-dimensional arrays can only be
embedded with dilation Ω(log N) (the worst
possible)

However, O(1)-dimensional arrays can be
simulated with constant slowdown.

The Butterfly, Cube-Connected-Cycles and Benes Networks – p.16/16

	Introduction
	The butterfly
slidenum {1}
	Example of a 3-level butterfly
	The butterfly
slidenum {2}
	The Cube-Connected-Cycles
	 CCCs $equiv $ wrapped butterfly
	The Benes Network
	Example of a Benes network
	Simulation of Arbitrary networks
	Simulation - Proof sketch
slidenum {1}
	Simulation - Proof sketch
slidenum {2}
	Normal Hypercube Algorithms
slidenum {1}
	Normal Hypercube Algorithms
slidenum {2}
	Normal Hypercube Algorithms
slidenum {3}
	Containment and Simulation Results

