Elementary O(logN) Step Algorithms

*Packet routing

*Sorting

*Matrix vector multiplication
«Jacobi relaxation

*Pivoting

«Convolution

2.TTUpOC Kopvnvog

Elementary O(logN) Step Algorithms

*Algorithms are optimal in terms of speed.
Only matrix Algorithms are work efficient.

*Routing sorting convolution use N2
processors to solve problems of size N in
O(log N) steps.

-But they can be improved by O(N) by
pipelining.

*With hypercubic networks these can be
solved in O(logN) steps and with O(N)

processors. Optimal in both speed and work
efficiency.

Routing

N X N mesh of trees have bisection width N

*Hence they will not be able to sort or route in
less than Q(N) steps.

N x N mesh of trees no faster than N x N
array when one needs to route N2 packets.

But N x N mesh of trees have a smaller
diameter!

Sparse Routing

M<N packets stored in the row roots, can be
routed in 2 log N steps to desired column
roots.

Sparse Routing Algorithm

Let O<p,=N-1 be the desired destination of the
packet stored in the i-th row tree root.
(column tree root)

Route the packet to the p;-th
leaf of 1ts row. (*log N steps
needed™)

eRoute the packet to 1ts column
tree root. (*log N steps needed*)

Sparse Routing Algorithm

*Let O<p=N-1 be the desired destination of
the packet. (column tree root)

*If the destinations are mutually different the
paths will never intersect.

Matrix Vector Multiplication

Let A=(a;) be a N x N matrix, x an N vector,
y their product.

Enter X; Into the 1-th column
root. 1 < 1< N.

ePass X; to the leafs of 1ts tree.
(1-th tree) (*log N steps?¥)
Input a;; Into the (1,)) leaf.
-Compute the product a;; X;

The values are summed by the row
trees. (*log N steps®)

N
Yi = Z ai,ij
j=1

Matrix Vector Multiplication
Complexity

*The algorithm needs 2 log N steps

By pipelining r vectors (input at the row roots
new vector elements) we get with a delay

2 log N the result of each multiplication.

*log N + r complexity for pipelined
multiplications.

Jacobl Relaxation

«Jacobi Relaxation can be expressed as a
matrix vector product.

—

AX =b approximated by

(%D (0 =L e = MY ()
R+ || =%, 0 e =L ()
TG I 77 D R 7 R0

N 1) 0 0 1 A 1

Jacobi Relaxation Implementation

*b; is stored on the (i,i) processor. a; is stored
on the (i,j) processor

*X;(t) is stored in the i-th column root.

[INIT]a;; 1S Inverted at the (1,1)
leaf processor and passed to every
leaf of the 1-th row. b; /a;; IS
stored on the (i1,1) processor. -
a;; /a;; 1s stored on the (1,])
processor

Jacobi Relaxation Implementation

eMatrix vector multiplication as
usual, but

I (1=)) /a;; 1s the constant
result the leaf processor passes
1ts row parent.

Route x; from the row root to the
column root.

o(* forall iterations 4 log N =
O(log N) steps needed *)

Gaus Seidel Relaxation

*Gaus Seidel Relaxation in 3D meshes of
trees in O(log? N) with ©(N3) processors.

°In 2D meshes of trees unresolved.

	Elementary O(logN) Step Algorithms
	Elementary O(logN) Step Algorithms
	Routing
	Sparse Routing
	Sparse Routing Algorithm
	Sparse Routing Algorithm
	Matrix Vector Multiplication
	Matrix Vector Multiplication�Complexity
	Jacobi Relaxation
	Jacobi Relaxation Implementation
	Jacobi Relaxation Implementation
	Gaus Seidel Relaxation

