
Elementary O(logN) Step Algorithms

•Packet routing
•Sorting
•Matrix vector multiplication
•Jacobi relaxation
•Pivoting
•Convolution

Σπύρος Κομνηνός



Elementary O(logN) Step Algorithms

•Algorithms are optimal in terms of speed. 
Only matrix Algorithms are work efficient.
•Routing sorting convolution use N2

processors to solve problems of size N in 
O(log N) steps.
•But they can be improved by Θ(Ν) by 
pipelining.
•With hypercubic networks these can be 
solved in O(logN) steps and with O(N) 
processors. Optimal in both speed and work 
efficiency.



Routing

•N x N mesh of trees have bisection width N 
•Hence they will not be able to sort or route in 
less than Ω(Ν) steps. 
•N x N mesh of trees no faster than N x N 
array when one needs to route N2 packets.
•But N x N mesh of trees have a smaller 
diameter!



Sparse Routing

•M≤N packets stored in the row roots, can be 
routed in 2 log N steps to desired column 
roots.



Sparse Routing Algorithm

Let 0≤pi≤N-1 be the desired destination of the 
packet stored in the i-th row tree root. 
(column tree root)
•Route the packet to the pi-th
leaf of its row. (*log N steps 
needed*)
•Route the packet to its column 
tree root. (*log N steps needed*)



Sparse Routing Algorithm

•Let 0≤pi≤N-1 be the desired destination of 
the packet. (column tree root)
•If the destinations are mutually different the 
paths will never intersect.



Matrix Vector Multiplication

•Let A=(aij) be a N x N matrix, x an N vector, 
y their product.
•Enter xi into the i-th column 
root. 1 ≤ i≤ N.
•Pass xi to the leafs of its tree. 
(i-th tree) (*log N steps*)
•Input aij into the (i,j) leaf.
•Compute the product aij xj
•The values are summed by the row 
trees. (*log N steps*)
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Matrix Vector Multiplication
Complexity

•The algorithm needs 2 log N steps
•By pipelining r vectors (input at the row roots 
new vector elements) we get with a delay         
2 log N the result of each multiplication.
•log N + r complexity for pipelined 
multiplications.



Jacobi Relaxation
•Jacobi Relaxation can be expressed as a 
matrix vector product.
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Jacobi Relaxation Implementation
•bi is stored on the (i,i) processor. aij is stored 
on the (i,j) processor
•xi(t) is stored in the i-th column root.

•[INIT]aii is inverted at the (i,i) 
leaf processor and passed to every 
leaf of the i-th row. bi /aii is 
stored on the (i,i) processor. -
aij /aii is stored on the (i,j) 
processor



Jacobi Relaxation Implementation
•Matrix vector multiplication as 
usual, but
•If (i=j) /aii is the constant 
result the leaf processor passes 
its row parent.
•Route xi from the row root to the 
column root.

•(* forall iterations 4 log N = 
O(log N) steps needed *)



Gaus Seidel Relaxation 
•Gaus Seidel Relaxation in 3D meshes of 
trees in O(log2 N) with Θ(Ν3) processors.
•In 2D meshes of trees unresolved.
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