
Packet Routing

In Array networks



Structure and Sections

Greedy algorithms 
Probabilistic analysis
Randomized algorithm
Deterministic algorithm
Off line routing



Greedy algorithms - Linear array
Shortest path is used.
Each packet that needs to move 
rightwards or leftwards does so.

Algorithm terminates when all packets arrive at 
destination.
each node can be a source and/or destination of at 
most one packet => no contention.
Algorithm will need N-1 steps (worst case).



Greedy algorithm - 2D array

Queuing discipline needed.
Farthest_first(): The packet that needs 
to move farthest does so. 

Basic Greedy Algorithm:
Move on the column to the correct row.

Move on the row to the correct cell using 
Farthest_first.



Farthest first - 1D array

Lemma: Consider a N node linear array in which each 
node contains an arbitrary number of packets, but for 
which there is at most one destined for each node. If 
edge contention is resolved via farthest first then 
greedy routes all the packets in N-1 steps.



Greedy algorithm - 2D array

First phase needs
Second phase needs another  
Nothing better can be asked for!

1−N
1−N



Queue size
Source at

(1,2), (1,3),…,(1,√N/3) and
(2,1), (2,2),…,(2, 2√N/3)

Destination
(3, √N/3), (4, √N/3),…,(√N, √N/3)

They arrive at processor at (2, √N/3) within √N/3-1 
steps
A queue of size 2 √N/3 –1 emerges.



Greedy algorithm – Average Case

Two setups for the average case analysis.
[Static] Each processor has a packet destined to a 
random processor. 
[Dynamic] At each processor a packet is generated at 
every step with a sufficiently small probability. 
Destination is random.



N packets to random destinations

It is possible that several packets have the same 
destination. Worst case now could be N (though 
exceedingly small).

BUT: Every packet gets to its destination within 
d+O(logN) steps with high probability 1-Ο(1/Ν).

No more than 4 packets wait for the same edge with 
high probability.



N packets to random destinations

There is never contention for row edges.
The size of a column queue increases when more than 

one packets enter. Only one of them arrives over the 
column edge. We say the others turn. We want to 
estimate how many turn.

Each packet turns once along its path! At most √N turn 
belong to that row and can turn. The probability that 
the destination is such that it turns is 1/ √N



Probability that r packets turn
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Lemma 1.6
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Bound on turn probability
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Bound on turn probability
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Bound queue size
For all 4N processors with probability at most o(1/N) 
no queue exceeds 
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Packet streams
Analysis based on steady packet streams. If they are 
not provided queues will be a lot smaller.
Wide channel model assumes no queuing delays. It 
can be used to reason back on the standard model. 
When no to many packets cross a column edge in a 
window of time in the wide channel model, not too 
many cross it in the standard model.



Bound “wide channel”
Consider the window [t+1, t+∆]. If Q is the # 
packets crossing a queue from (i,j) to (i+1,j) in that 
window in the wide channel model then 

2/)ln1( ∆−−≤ αααeQ



Bound “wide channel”
Consider the window [t+1, t+∆]. If a packet crosses 
the edge it must originate in the upper i rows. If it 
crosses the edge in time T it must be at distance T. 
At most 2 cells in a row are at that distance. Ergo 2i 
cells are eligible.  This happens for all time points in 
the window. 
All eligible packets are 2i∆.
The probability that they are destined for for the 
remaining packets on the column j is iN −



Expected # packets during window:
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Chernoff bounds

Given a collection of independent Bernoulli rv’s where 
P[Xk]≤Pk 
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A Bound via Chernoff 

For 

We get that the # packets crossing the edge Q 
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Wide channel – standard model

Lemma 1.8: If a packet p is at distance d from a 
column edge e after step T and p crosses e after step 
T+d+δ, in the standard model then a packet must 
cross e at each step in the interval [T+d,T+d+ δ]

Corollary 1.9: If a packet crosses a column edge e at 
step T of the wide channel model and it crosses e at 
step T+ δ of the standard model, then some packet 
crosses e at every step in the interval [T,T+ δ] of the 
standard model



Wide channel – standard model

Lemma 1.10: For all T, ∆, x>0 if x packets cross an 
edge during a window of ∆ steps [T+1, T+ ∆] of the 
standard routing model, then there is a t ≥ 0 for 
which at least x+t packets cross e during the interval 
[T+1-t, T+ ∆] of the wide channel model.



Standard model

Lemma 1.11: The probability that α∆/2 or more 
packets cross some column edge e during a window 
of ∆ steps using the basic greedy algorithm is at most 
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Standard model

Lemma 1.12: With probability 1-O(1/N) no more than 
c logN packets cross nay column edge on consecutive 
steps of the basic greedy algorithm where c <9.



Standard model

Theorem 1.13: When the basic greedy routing 
algorithm is used to route N packets on an √N x √N 
array the maximum number of packets ever queued 
on any edge at any time is at most four. With 
probability 1-O(log4N/√N).
Moreover the probability that any particular packet is 
delayed steps is at most )( 6/∆−eO



Dynamic routing

Model change dynamisation.
Static routing with time barriers.
Stability issues rise!



Dynamic routing stability

Stability issues rise!
λ Probability of packet generation every step any cell.
Bisection width is √N.
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Dynamic routing stability

Theorem 1.14: If the arrival rate of packets is at most 
99% of network capacity, then the probability that 
any particular packet is delayed ∆ steps is at most e-

c∆ where c > 0 does not depend on N or the time the 
packet was generated.

Moreover in any window of T steps the maximum delay 
incurred by any packet is O(logT+logN) with high 
probability and the maximum observed queue size is 
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Dynamic routing result

Theorem 1.14: If the arrival rate of packets is at most 
99% of network capacity, then the probability that 
any particular packet is delayed ∆ steps is at most e-

c∆ where c > 0 does not depend on N or the time the 
packet was generated.

Moreover in any window of T steps the maximum delay 
incurred by any packet is O(logT+logN) with high 
probability and the maximum observed queue size is 
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Randomized routing 

Generally running time is not a problem. Queue sizes 
are!

Since average case is good make worst case average. 
This is achieved via randomization.

We will reduce queue sizes without increasing running 
time .

Idea: First route to a random destination then finish by 
routing to the final destination.



Randomized routing results

Algorithm design tools
1. Restrict choice of intermediate destinations.
2. Manage queues carefully
Best result known for one to one routing
Running time:  2√N+O(logN)
Queues: O(1)     whP
Result presented here
Running time:  2√N+o(√ N)
Queues:         O(logN) whP



Randomized routing algorithm

Phase 1 Partition each column into log N 
intervals. Route each packet  into a 
random destination within its 
interval.

Phase 2 Each packet is routed to its 
correct row.

Phase 3 Each packet is routed to its 
correct destination within its column.



Analysis Randomized routing 

Phase 1
Each partition has √N/logN elements. Since every node 

originally has one packet exactly this is the time 
needed.

How many packets end up in each node?
Via Chernov the probability for one cells queue Q
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Analysis Randomized routing 

Phase 2
This phase needs √N + o(√N) steps. Contention is 

resolved using LIFO discipline.
Ergo once a packet starts moving it is never delayed.
We have to bound the time t a packet is delayed 

before moving. If the packets resides in processor 
(i,j) t packets are in (1,j), (2,j), …, (i,j) and pass to 
node (i,j+1) during 1,2,…,t of phase 2. 



Chernoff II Lemma1.15
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Randomized routing analysis cont.

There are j√N/ log N packets that could wind up in 
the first j nodes of row i after phase 1. Each packet 
does that with probability logN / √N.
Depending on whether j≥ 6 lnN we can use Chernoff 
I or II and obtain that whp 1 – O (1/N)

j+ o(√ N) packets are located in (i,1)(i,2)…(i,j)!
Since the distance is at most √N-j-1 and queuing delay  

j+ o(√ N)    =>
Phase 2 needs whp

)( NoN +



Queues in randomized routing

Queues in row edges in phase 2 do not increase. We 
must bound # packets at the beginning of the phase. 
Consider node (i,j) as a destination node for phase 2. 
It can be destination for at most √N packets, which 
have a column j destination (because of 1-1). Each  
one of them has a log N/√N change to go to row I in 
phase 1. 
O(log N) of the packets are sent to row i with 
probability 1-O(1/N2)
The same happens for all N processors with 
probability 1-O(1/N)



Randomized routing Phase 3

The analysis of this phase is identical as that of basic 
greedy routing. We begin with O(logN) packets in 
each processor. The # of packets do not increase 
during that phase. 
Every packet is in the correct column and at most 
one is destined for each processor. Running time is at 
most √N-1.



Randomized routing 

Running time is at most 2√N + o(√N).
Queues are O(logN)
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