
Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization
A Basic Introduction

Antonis Antonopoulos

CoReLab Seminar

National Technical University of Athens

21/3/2011

Outline Introduction Circuits PRGs Uniform Derandomization Refs

1 Introduction
History & Frame
Basic Results

2 Circuits
Definitions
Basic Properties
Hard Functions
Circuit Lower Bounds

3 PRGs
Pseudorandom Generator Definitions
Main Derandomization Results

4 Uniform Derandomization
Derandomization of BPP
Derandomization of other CCs

5 Refs

Outline Introduction Circuits PRGs Uniform Derandomization Refs

History & Frame

Introduction

Randomness offered much efficiency and power as a
computational resource.

Derandomization is the “transformation” of a randomized
algorithm to a deterministic one:
Simulate a probabilistic TM by a deterministic one, with
(only) polynomial loss of efficiency!

Indications:
1 Pseudorandomness (Randomness doesn’t really exist.)
2 “Practical” examples of Derandomization

Possibilities concernig Randomized Languages:
1 Randomization always help! (BPP = EXP)
2 The extend to which Randomization helps is problem-specific.
3 True Randomness is never needed: Simulation is possible!

(BPP = P)

Outline Introduction Circuits PRGs Uniform Derandomization Refs

History & Frame

Facts

Yao ,and Blum-Micali introduced the concept of
hardness-randomness tradeoffs:
If we had a hard function, we could use it to compute a string
that “looks“ random to any feasible adversary (distinguisher).
In a cryprographic context, they introduced Pseudorandom
Generators.

Nisam & Wigderson weakened the hardness assumption (for
the purposes of Derandomization), introducing new tradeoffs
between hardness and randomness.

Impagliazzo & Wigderson proved that P=BPP if E requires
exponential-size circuits.

All the above results are in non-uniform settings, i.e. Lower
Bounds of uniform classes in non-uniform models.

Impagliazzo & Wigderson proved also a result based on
Uniform complexity assumption (BPP 6= EXP)!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Basic Results

Basic Results Outline

BPP = P: Randomness never solves new problems
(Robustness of our models).

BPP = EXP: Randomness is powerful.

Either:

BPP = P
No problem in E = DTIME(2O(n)) has strictly exponential
circuit complexity.

Either:

BPP = EXP
Any problem in BPP has a deterministic subexponential
algorithm (SUBEXP =

⋂
ε>0 DTIME(2nε)) that works on

almost all instances.

Simiral results for other randomized classes!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Basic Results

Basic Results Outline

If we prove Lower Bounds (for some language in EXP),
derandomization of BPP will follow.

On the other hand, the existence of a quick PRG would imply
a superpolynomial Circuit Lower Bound for EXP.

Derandomization requires Circuit Lower Bounds:

EXP ⊆ P/poly ⇒ EXP = MA

NEXP ⊆ P/poly ⇒ NEXP = EXP = MA

It is impossible to separate NEXP and MA without proving
that NEXP * P/poly.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Definitions

Outline

1 Introduction
History & Frame
Basic Results

2 Circuits
Definitions
Basic Properties
Hard Functions
Circuit Lower Bounds

3 PRGs
Pseudorandom Generator Definitions
Main Derandomization Results

4 Uniform Derandomization
Derandomization of BPP
Derandomization of other CCs

5 Refs

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Definitions

Boolean Circuits

A Boolean Circuit is a natural model of nonuniform
computation.

Definition (Boolean circuits...)

For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with
one of ∧ (and), ∨ (or) or ¬ (not).

The vertices labeled with ∧ and ∨ have fan-in (i.e. number or
incoming edges) 2.

The vertices labeled with ¬ have fan-in 1.

The size of C , denoted by |C |, is the number of vertices in it.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Definitions

Boolean Circuits

Definition (....Boolean circuits cont.)

For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

For every vertex v of C , we assign a value as follows: for
some input x ∈ {0, 1}n, if v is the i-th input vertex then
val(v) = xi , and otherwise val(v) is defined recursively by
applying v ’s logical operation on the values of the vertices
connected to v .

The output C (x) is the value of the output vertex.

The depth of C is the length of the longest directed path from
an input node to the output node.

The fixed size of the input limits our model, so we allow
families of circuits to be used!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Definitions

Circuit Families

Definition

Let T : N→ N be a function. A T (n)-size circuit family is a
sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and
a single output, and its size |Cn| ≤ T (n) for every n.

Definition

P/poly is the class of languages that are decidable by polynomial
size circuits families. That is,

P/poly =
⋃
c

SIZE(nc)

P (P/poly

If NP ⊆ P/poly, then PH = Σp
2 (Karp-Lipton Theorem)

If EXP ⊆ P/poly, then EXP = Σp
2 (Meyer’s Theorem)

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Basic Properties

Theorem (Nonuniform Hierarchy Theorem)

For every functions T ,T ′ : N→ N with 2n

n > T ′(n) > 10T (n) > n,

SIZE(T (n)) (SIZE(T ′(n))

Definition

For a finite Boolean Function f : {0, 1}n → {0, 1}, we define the
(circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C (x) = f (x), ∀x ∈ {0, 1}n).

We can generalize the above definition for string functions:

Definition (Circuit Complexity)

For a finite Boolean Function f : {0, 1}∗ → {0, 1}∗, and {fn} be
such that f (x) = f|x |(x) for every x . The (circuit) complexity of f
is a function of n that represents the smallest Boolean Circuit
computing fn (that is, C|x |(x) = f (x),∀x ∈ {0, 1}∗).

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Basic Properties

Circuit Families & Functions

A super-polynomial circuit complexity for any (boolean)
function in NP, would imply that P 6= NP.

If f has a uniform (i.e. a polynomial-time algorithm that on
input n produces a circuit computing fn) sequence of
polynomial-size circuits, then f ∈ P.

Also, any f ∈ P has a uniform sequence of polynomial-size
circuits.

If we prove that NP * P/poly, then we will have shown that
P 6= NP

We use this computational model, instead of TMs, because
circuits are considered more direct or ”pervasive”.

We also know (since 1949) that some functions require very
large circuits to compute...

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Hard Functions

Existence of Hard Functions

Theorem (C.E. Shannon)

For every n > 1, ∃f : {0, 1}n → {0, 1} that cannot be computed by
a circuit C of size 2n

10n .

Proof: We use simple counting arguments:

The number of functions f : {0, 1}n → {0, 1} is 22n

Every circuit at size at most S can be described as a string of
9S log S , the nimber of circuits is at most 29S log S

We set S = 2n

10n ⇒ · · · ⇒ 29S log S ≤ 22n9n/10n < 22n

So, there exists a function that is not computed by circuits of
that size!

By more careful calculations, we can obtain a bound of:

2n
(

1 + log n
n −O(1/n)

)
(2005).

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Circuit Lower Bounds

Introduction

Many researchers believed that circuit lower bounds are
indeed the solution to the ”P vs. NP”.

But the best lower bound for an NP language we have is
5n − o(n) (2005).

Better lower bounds for some special cases:

Bounded depth circuits: exp
(
Ω(n1/(d−1))

)
(for PARITY

function).

Monotone circuits: 2Ω(n1/8) (for CLIQUE), but exponential
gap with general circuits.
Bounded depth circuits with ”counting” gates.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Outline

1 Introduction
History & Frame
Basic Results

2 Circuits
Definitions
Basic Properties
Hard Functions
Circuit Lower Bounds

3 PRGs
Pseudorandom Generator Definitions
Main Derandomization Results

4 Uniform Derandomization
Derandomization of BPP
Derandomization of other CCs

5 Refs

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Pseudorandom Generator Definitions

Definitions

Definition (Yao-Blum-Micali Definition)

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable
function. Also, let ` : N→ N be a polynomial-time computable
function such that ∀n : `(n) > n. We say that G is a
pseudorandom generator of stretch `(n), if |G (x)| = `(|x |) for every
x ∈ {0, 1}∗, and for every probabilistic polynomial-time algorithm
A, there exists a negligible function ε : N→ [0, 1] such that:∣∣Pr [A(G (Un)) = 1]− Pr

[
A(U`(n)) = 1

]∣∣ < ε(n)

Stretch Function: ` : N→ N
Computational Indistinguishability: any algorithm A
cannot decide whether a string is an output of the generator,
or a truly random string.

Resources used: Its own computational complexity.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Pseudorandom Generator Definitions

Definitions

Theorem

If one-way functions exist, then for every c ∈ N, there exists a
pseudorandom generator with stretch `(n) = nc .

Definition (Nisan-Wigderson Definition)

A distribution R over {0, 1}m is an (S , ε)-pseudorandom (for
S ∈ N, ε > 0) if for every circuit C , of size at most S :

|Pr [C (R) = 1]− Pr [C (Um) = 1] | < ε

where Um denotes the uniform distribution over {0, 1}m
If S : N→ N, a 2n-time computable function G : {0, 1}∗ → {0, 1}∗
is an S(`)-pseudorandom generator if |G (z)| = S(|z |) for every
z ∈ {0, 1}∗ and for every ` ∈ N the distribution G (U`) is
(S(`)3, 1

10)-pseudorandom.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Pseudorandom Generator Definitions

Definitions

The choices of the constants 3 and 1
10 are arbitrary.

The functions S : N→ N will be considered time-constructible
and non-decreasing.

The main differences are:

We allow non-uniform distinguishers, instead of TMs.
The generator runs in exponential time instead of polynomial.

Theorem

Suppose that there exists an S(`)-pseudorandom generator for a
time-constructible nondecreasing S : N→ N. Then, for every
polynomial-time computable function ` : N→ N, and for some
constant c:

BPTIME(S(`(n)) ⊆ DTIME(2c`(n))

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Main Derandomization Results

Main Results

Theorem

If there exists a 2ε`-pseudorandom generator for some
constant ε > 0, then BPP = P.

If there exists a 2`
ε
-pseudorandom generator for some

constant ε > 0, then BPP ⊆ QuasiP.

If for every c > 1 there exists an `c -pseudorandom generator,
then BPP ⊆ SUBEXP.

We can relate the existence of PRGs with the (non-uniform)
hardness of certain Boolean functions. That is, the size of the
smallest Boolean Circuit which computes them.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Main Derandomization Results

Main Results

Definition (Average-case and Worst-case hardness)

For f : {0, 1}n → {0, 1}, and ρ ∈ [0, 1] we define the
ρ-average-case hardness of f , denoted Hρ

avg (f), to be the largest S
that for every circuit C of size at most S :

Prx∈{0,1}n [C (x) = f (x)] < ρ

We define the worst-case hardness of f , denoted Hwrs(f) to equal
H1
avg (f), and the average-case hardness of f , denoted Havg (f) to

equal: max{S |H1/2+1/S
avg (f) ≥ S}. That is, Havg (f) is the largest

number S such that:

Prx∈{0,1}n [C (x) = f (x)] <
1

2
+

1

S

for every Boolean Circuit C on n inputs with size at most S .

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Main Derandomization Results

Main Results

Theorem (PRGs from average-case hardness)

Let S : N→ N be time-constructible and non-decreasing. If there
exists f ∈ DTIME(2O(n)) such that ∀n : Havg (f)(n) ≥ S(n), then
there exists an S(δ`)δ-peudorandom generator for some constant
δ > 0.

We can connect Average-case hardness with worst-case
hardness using the following Lemma:

Theorem

Let f ∈ E be such that Hwrs(f)(n) ≥ S(n) for some
time-constructible nondecreasing S : N→ N.
Then, there exists a function g ∈ E and a constant c > 0 such
that: Havg (g)(n) ≥ S(n/c)1/c for every sufficiently large n.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Main Derandomization Results

Main Results

Theorem (Derandomizing under worst-case assumptions)

Let S : N→ N be time-constructible and nondecreasing. If there
exists f ∈ DTIME(2O(n)) such that ∀n : Hwrs(f)(n) ≥ S(n), then
there exists a S(δ`)δ-peudorandom generator for some constant
δ > 0.
In particular, the following hold:

1 If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that
Hwrs(f)(n) ≥ 2εn, then BPP = P.

2 If there exists f ∈ E = DTIME(2O(n)) and ε > 0 such that
Hwrs(f)(n) ≥ 2n

ε
, then BPP ⊆ QuasiP.

3 If there exists f ∈ E = DTIME(2O(n)) such that
Hwrs(f)(n) ≥ nω(1), then BPP ⊆ SUBEXP.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Outline

1 Introduction
History & Frame
Basic Results

2 Circuits
Definitions
Basic Properties
Hard Functions
Circuit Lower Bounds

3 PRGs
Pseudorandom Generator Definitions
Main Derandomization Results

4 Uniform Derandomization
Derandomization of BPP
Derandomization of other CCs

5 Refs

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization of BPP

Uniform Derandomization of BPP

Theorem (IW98)

If EXP 6= BPP, then, for every ε > 0, every BPP algorithm can
be simulated deterministically in time 2n

ε
so that, for infinitely

many n’s, this simulation is correct on at least 1− 1
n fraction of all

inputs of size n.

That’s the first (universal) Derandomization result, which
implies the non-trivial derandomization of BPP, under a fair
(but open) assumption!

But:

1 The simulation works only for infinitely many input lengths
(i.o. complexity)

2 May fail on a negligible fraction of inputs even of these
lengths!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization of BPP

Proof Outline

1 Hard Function: We will use a ”Σp
2-hard“ Boolean Function f

with some desired properties (PERMANENT in our case).

2 The Generator: We’ll construct a PRG G using the above
function, similar to the NW-construction.

3 Derandomization: We will fix a (probabilistic) algorithm
∀L ∈ BPP, and for all inputs we will run it deterministically
over all outputs of G , and take the majority vote!
If this algorithm fails to be in subexponential time, then we’ll
have an efficient distinguisher!

4 Removing the Oracle: If the above holds we have:

An efficient algorithm for fn given an oracle.
We can ”use“ our construction as a BPP algorithm for f , by
removing its oracles!

And, thus, we have a contradiction, which proves our theorem!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization of other CCs

Uniform Derandomization of RP

Theorem (Kab01)

At least one of the following holds:

1 RP ⊆ ZPP

2 For any ε > 0, every RP algorithm can be simulated in
deterministic time 2n

ε
so that, for any polynomial-time

computable function f : {1}n → {0, 1}n, there are infinitely
many n’s where the simualtion is correct on the input f (1n).

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization of other CCs

Uniform Derandomization of AM

Theorem (Lu00)

At least one of the following holds:

1 AM = NP

2 For any ε > 0, every NP (and every coNP) algorithm can be
simulated in deterministic time 2n

ε
so that, for any

polynomial-time computable function f : {1}n → {0, 1}n,
there are infinitely many n’s where the simualtion is correct on
the input f (1n).

Since GNI is in both AM and coNP, the above theorem
implies that either GNI ∈ NP, or it can be simulated in
deterministic subexponential time, so that the simulation is
correct with respect to any pol-time computable function
f : {1}n → {0, 1}n.

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Derandomization of other CCs

Uniform Derandomization of AM

Theorem (GST03)

If E * AM-TIME(2εn) for some ε > 0, then every language
L ∈ AM has an NP algorithm A such that, for every
polynomial-time computable function f : {1}n → {0, 1}n there are
infinitely many n’s where the algorithm A decides correctly L on
the input f (1n).

”Gap Theorem“ interpretation: Either AM is almost as
powerful as E, or AM is no more powerful than NP from the
point of view of any efficient observer!

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Further Reading

Sanjeev Arora and Boaz Barak, Computational Complexity: A
Modern Approach. Cambridge University Press, 1 edition, April
2009.

Russell Impagliazzo,Hardness as Randomness: a survey of uni-
versal derandomization, 2003

Valentine Kabanets,Derandomization: a Brief Overview. Bulletin of
the EATCS, 76:88-103, 2002.

Russell Impagliazzo and Avi Wigderson, Randomness vs Time:
De-Randomization under a Uniform Assumption, 1998

Valentine Kabanets, Easiness assumptions and hardness tests:
Trading time for zero error, 2001

Chi-Jen Lu. Derandomizing Arthur-Merlin Games under Uniform
Assumptions, 2000

Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. Uniform
hardness versus randomness tradeoffs for Arthur-Merlin games, 2003

Outline Introduction Circuits PRGs Uniform Derandomization Refs

Thank You!

	Outline
	Introduction
	History & Frame
	Basic Results

	Circuits
	Definitions
	Basic Properties
	Hard Functions
	Circuit Lower Bounds

	PRGs
	Pseudorandom Generator Definitions
	Main Derandomization Results

	Uniform Derandomization
	Derandomization of BPP
	Derandomization of other CCs

	Refs

